ALL Metrics
-
Views
-
Downloads
Get PDF
Get XML
Cite
Export
Track
Research Article

R 4- STANDBY- STRENGTH-STRESS MODEL

[version 1; peer review: awaiting peer review]
PUBLISHED 22 Dec 2025
Author details Author details
OPEN PEER REVIEW
REVIEWER STATUS AWAITING PEER REVIEW

This article is included in the Fallujah Multidisciplinary Science and Innovation gateway.

Abstract

Background

A standby system is defined as a system consisting of several components, where only one component operates at a time while the others remain in standby mode. The system fails when the applied stress exceeds the strength of the active component, at which point one of the standby components is activated. It is assumed that the inactive components do not undergo any change in their properties while in standby mode, and the system is considered to have failed when all its components have failed.

Methods

In this study, a mathematical formula of the standby system was derived for more than one component. Y is subject to independent random variable Ψ with Distribution of stress, which is considered a combination of two exponentials and the stress. It follows the following distributions: one-parameter exponential, two-parameter exponential, one parameter Lindley, and two-parameter generalized exponential. Hence, the dependent functions of the standby system are found { R ( 1 ) , R ( 2 ) , R ( 3 ) , R ( 4 ) , R 4 } depending on the mathematical formulas derived for each of the four distributions mentioned above.

Results

In this section, we will obtain the stress-strength of standby Reliability system R 4 , based on four different distributions the above mentioned, the standby Reliability functions R ( 2 ) for distributions are given by adding Marginal Reliability R ( 1 ) and R ( 2 ) , R ( 3 ) given by adding R ( 1 ) , R ( 2 ) and R ( 3 ) . Also R 4 given by adding R ( 1 ) , R ( 2 ) , R ( 3 ) and R ( 4 ) , and parameters estimator by maximum likelihood.

Conclusions

a simulation study will be conducted to see the behavior of { R ( 1 ) , R ( 2 ) , R ( 3 ) , R ( 4 ) , R 4 } of a standby system for four different distributions, in this simulation study will be conducted to see the estimator for all distributions and compare the results by using one important statistical criteria mean square error (MSE). Then results will be discussed to see which one of the estimators is the best for each one of the distributions separately.

Keywords

standby system, strength-stress, Reliability system, maximum likelihood function, generalized exponential, Lindley distribution.

1. Introduction

The estimation of reliability in stress and stress systems has become more important to researchers, particularly in the last century, when the distributions are independent. A standby system is a system that contains several components that are operating, and one of the components is active, while the remaining components are in standby mode. The system fails when the stress is greater than the strength of the active component, as well as other components in the standby mode. Consider a standby system that contains (n) identical components.7 Assume that one component in the system is operational and performs its assigned tasks, whereas the remaining (n-1) components are in standby.4 We assumed that these components are operational and idle. This system is known as the standby system. When the stress is greater than the (s trength), it leads to failure of the component in the working position. There are two types of components: one in the active position and the other in the standby position. In the component standby system, there are two failure distributions: the first failure distribution occurs when the function is in the active mode and the second failure distribution when the component is in the standby mode. When the failure rate of the component in standby mode is such that the component is in active mode, we say that the vehicle has (hot standby).12 If the failure rate of the component in standby mode is zero, then we call the system (gold standby), which we will adopt in this research. The estimation of the reliability function in the standby system was based on a combination of exponential distribution(exp.-dis.). This study was conducted by6 on the estimation of the reliability in the strength and stress systems for a system that contains multiple components and uses the standby system for different distributions.11

2. Discussion of reliability

Consider that Yi (i = 1,2,..,n) is the strength, which is an independent random variable (r.v.) arranged in the order of activation. In addition, Ψ i (i = 1,2,…,n) is the stress that is independent r.v. so, R 4 is given by2,3

(1)
R4=i=14R(i)

Where R (i) = P (Y1 < Ψ 1, Y2 < Ψ 2,…, Yi-1 < Ψ i-1, Yi Ψ i) is reliability.

Consider fi(y), gi( Ψ ) as the p.d.f. (i = 1,2,…,n); therefore, we have

(2)
R(i)=[j=1i1ΨTj(Ψ)gi(Ψ)][T¯j(Ψ)gi(Ψ)]

Where Ti(Ψ) is the cumulative distribution function and T¯i(Ψ)=1Ti(Ψ) . In this study, we examine four different distributions.

2.1 (Stress) follows one parameter (exp.-dis.) and (Strength) follows a combination of the two (exp.-dis.)

Considering that the strength follows a mixture of tow (exp-dis.) with p.d.f.;

(3)
f1(y)=P1eϑ1y+(1P1)eϑ2y

Therefore; T¯1(y)=P1eϑ1y+(1P1)eϑ2y

Also the stress follows one parameter (exp-dis.) with p.d.f;

gi(Ψ)=μieμiΨμi>0,Ψ0

So,

R(1)=P(Y1Ψ)=0T¯1(Ψ)g1(Ψ)=0[P1eϑ1Ψ+(1P1)eϑ2Ψ]μieμiΨdΨ=P1μ10e(θ1+μ1)ΨdΨ+(1P1)μ10e(θ2+μ1)ΨdΨ=P1μ1ϑ1+μ1+(1P1)μ1ϑ2+μ1

Now,

R(2)=P(Y1<Ψ1,Y2Ψ2)=[0T1(Ψ)g1(Ψ)][0T¯2(Ψ)g2(Ψ)]=[1(P1μ1ϑ1+μ1+(1P1)μ1ϑ2+μ1)]0[P3eϑ3Ψ+(1P3)eϑ4Ψ]μ2eμ2ΨdΨ=[1(P1μ1ϑ1+μ1+(1P1)μ1ϑ2+μ1)][P3μ2ϑ3+μ2+(1P3)μ2ϑ4+μ2]
R(3)=P(Y1<Ψ1,Y2<Ψ2,Y3Ψ3)=[0T1(Ψ)g1(Ψ)][0T2(Ψ)g2(Ψ)][0T¯3(Ψ)g3(Ψ)]=[1(P1μ1ϑ1+μ1+(1P1)μ1ϑ2+μ1)][1(P3μ2ϑ3+μ2+(1P3)μ2ϑ4+μ2)][0[P5eϑ5Ψ+(1P5)eϑ6Ψ]μ3eμ3ΨdΨ][1(P1μ1ϑ1+μ1+(1P1)μ1ϑ2+μ1)][1(P3μ2ϑ3+μ2+(1P3)μ2ϑ4+μ2)][P5μ3ϑ5+μ3+(1P5)μ3ϑ6+μ3]

In the same way;

R(4)=P(Y1<Ψ1,Y2<Ψ2,Y3<Ψ3,Y4Ψ4)=[0T1(Ψ)g1(Ψ)][0T2(Ψ)g2(Ψ)][0T3(Ψ)g3(Ψ)][0T¯4(Ψ)g4(Ψ)]=[1(P1μ1ϑ1+μ1+(1P1)μ1ϑ2+μ1)][1(P3μ2ϑ3+μ2+(1P3)μ2ϑ4+μ2)][1(P5μ3ϑ5+μ3+(1P5)μ3ϑ6+μ3)][P7μ4ϑ7+μ4+(1P7)μ4ϑ8+μ4]

By using Equation (1), we get;

(4)
R4=R(1)+R(2)+R(3)+R(4)

2.2 (Stress) follows two parameter (exp.-dis.) and (Stress) follows a combination of the two (exp.-dis.)

Let the strength follow a combination of the tow (exp.-dis.) with p.d.f.;1

fi(y)=P2i1ϑ2i1eϑ2i1y+(1P2i1)ϑ2ieϑ2iy

Therefore; T¯1(y)=P1eϑ1y+(1P1)eϑ2y

Also the stress follows two parameter (exp-dis.) with p.d.f.;

gi(Ψ)=1£ie(Ψ£i)/£i,Ψ>α>0,Ψ0

Now,

R(1)=P(Y1Ψ1)=0T¯1(Ψ)g1(Ψ)=0[P1eϑ1Ψ+(1P1)eϑ2Ψ]1£1e(Ψα1)/£1dΨ=P1£1eα1£1αe(ϑ1+1£1)Ψ+(1P1)£1eα1£1αe(ϑ2+1£1)Ψ=eα1£1£1[P1e(ϑ1+1£1)α1(ϑ1+1£1)+(1P1)e(ϑ2+1£1)α1(ϑ2+1£1)]
R(2)=P(Y1<Ψ1,Y2Ψ2)=[0T1(Ψ)g1(Ψ)][0T¯2(Ψ)g2(Ψ)]=[1(eα1£1£1[P1e(ϑ1+1£1)α1(ϑ1+1£1)+(1P1)e(ϑ2+1£1)α1(ϑ2+1£1)])][P3£2eα2£2αe(ϑ3+1£2)Ψ+(1P3)£2eα2£2αe(ϑ4+1£2)Ψ]=[1(eα1£1£1[P1e(ϑ1+1£1)α1(ϑ1+1£1)+(1P1)e(ϑ2+1£1)α1(ϑ2+1£1)])]eα2£2£2[P3e(ϑ3+1£2)α2(ϑ3+1£2)+(1P3)e(ϑ4+1£2)α2(ϑ4+1£2)]

So,

R(3)=P(Y1<Ψ1,Y2<Ψ2,Y3Ψ3)=[0T1(Ψ)g1(Ψ)][0T2(Ψ)g2(Ψ)][0T¯3(Ψ)g3(Ψ)]=[1(eα1£1£1[P1e(ϑ1+1£1)α1(ϑ1+1£1)+(1P1)e(ϑ2+1£1)α1(ϑ2+1£1)])][1(eα2£2£2[P3e(ϑ3+1£2)α2(ϑ3+1£2)+(1P3)e(ϑ4+1£2)α2(ϑ4+1£2)])][P5£3eα3£3α3e(ϑ5+1£3)Ψ+(1P5)£3eα3£3α3e(ϑ6+1£3)Ψ]=[1(eα1£1£1[P1e(ϑ1+1£1)α1(ϑ1+1£1)+(1P1)e(ϑ2+1£1)α1(ϑ2+1£1)])][1(eα2£2£2[P3e(ϑ3+1£2)α2(ϑ3+1£2)+(1P3)e(ϑ4+1£2)α2(ϑ4+1£2)])](eα3£3£3[P5e(ϑ5+1£3)α2(ϑ3+1£3)+(1P5)e(ϑ6+1£3)α3(ϑ4+1£3)])]

In the same way;

R(4)=P(Y1<Ψ1,Y2<Ψ2,Y3<Ψ3,Y4Ψ4)=[0T1(Ψ)g1(Ψ)][0T2(Ψ)g2(Ψ)][0T3(Ψ)g3(Ψ)][0T¯4(Ψ)g4(Ψ)]=[1(eα1£1£1[P1e(ϑ1+1£1)α1(ϑ1+1£1)+(1P1)e(ϑ2+1£1)α1(ϑ2+1£1)])][1(eα2£2£2[P3e(ϑ3+1£2)α2(ϑ3+1£2)+(1P3)e(ϑ4+1£2)α2(ϑ4+1£2)])][P5£3eα3£3α3e(ϑ5+1£3)Ψ+(1P5)£3eα3£3α3e(ϑ6+1£3)Ψ]=[1(eα1£1£1[P1e(ϑ1+1£1)α1(ϑ1+1£1)+(1P1)e(ϑ2+1£1)α1(ϑ2+1£1)])][1(eα2£2£2[P3e(ϑ3+1£2)α2(ϑ3+1£2)+(1P3)e(ϑ4+1£2)α2(ϑ4+1£2)])][1(eα3£3£3[P5e(ϑ5+1£3)α2(ϑ3+1£3)+(1P5)e(ϑ6+1£3)α3(ϑ4+1£3)])][(eα4£4£4[P7e(ϑ7+1£4)α4(ϑ7+1£4)+(1P7)e(ϑ8+1£4)α4(ϑ8+1£4)]

By using Equation (1), we get;

(5)
R4=R(1)+R(2)+R(3)+R(4)

2.3 (Stress) follows one parameter Lindley distribution and (Stress) follows a combination of two (exp.-dis.)

Let the strength follow a combination of the tow (exp.-dis.) which is given in Equation (3), and the stress follows a one-parameter Lindley distribution with p.d.f.5

gi(Ψ)=ωi2(1+ωi)(1+Ψ)eωiΨωi>0,Ψ0,i=1,,n
R(1)=P(Y1Ψ1)=0T¯1(Ψ)g1(Ψ)=0[P1eϑ1Ψ+(1P1)eϑ2Ψ]ω12(1+ω1)(1+Ψ)eω1ΨdΨ=P1ω12(1+ω1)0(1+Ψ)e(ϑ1+ω1)Ψ+(1P1)ω12(1+ω1)0(1+Ψ)e(ϑ2+ω1)Ψ=P1ω12(1+ω1)[e(ϑ1+ω1)Ψ+0Ψe(ϑ1+ω1)Ψ]+(1P1)ω12(1+ω1)[e(ϑ2+ω1)Ψ+0Ψe(ϑ2+ω1)Ψ]=ω12(1+ω1)[P1ϑ1+ω1+1(ϑ1+ω1)2+(1P1)ϑ2+ω1+1(ϑ2+ω1)2]
R(2)=P(Y1<Ψ1,Y2Ψ2)=[0T1(Ψ)g1(Ψ)][0T¯2(Ψ)g2(Ψ)]=[1(ω12(1+ω1)[P1ϑ1+ω1+1(ϑ1+ω1)2+(1P1)ϑ2+ω1+1(ϑ2+ω1)2])]P3ω22(1+ω2)0(1+Ψ)e(ϑ3+ω2)Ψ+(1P3)ω12(1+ω2)0(1+Ψ)e(ϑ4+ω2)ΨdΨ=[1(ω12(1+ω1)[P1ϑ1+ω1+1(ϑ1+ω1)2+(1P1)ϑ2+ω1+1(ϑ2+ω1)2])](ω22(1+ω2)[P3ϑ3+ω2+1(ϑ3+ω2)2+(1P3)ϑ4+ω2+1(ϑ4+ω2)2])

So,

R(3)=P(Y1<Ψ1,Y2<Ψ2,Y3Ψ3)=[0T1(Ψ)g1(Ψ)][0T2(Ψ)g2(Ψ)][0T¯3(Ψ)g3(Ψ)]=[1(ω12(1+ω1)[P1ϑ1+ω1+1(ϑ1+ω1)2+(1P1)ϑ2+ω1+1(ϑ2+ω1)2])][1(ω22(1+ω2)[P3ϑ3+ω2+1(ϑ3+ω2)2+(1P3)ϑ4+ω2+1(ϑ4+ω2)2])]P5ω32(1+ω3)0(1+Ψ)e(ϑ5+ω3)Ψ+(1P5)ω32(1+ω3)0(1+Ψ)e(ϑ6+ω3)ΨdΨ=[1(ω12(1+ω1)[P1ϑ1+ω1+1(ϑ1+ω1)2+(1P1)ϑ2+ω1+1(ϑ2+ω1)2])][1(ω22(1+ω2)[P3ϑ3+ω2+1(ϑ3+ω2)2+(1P3)ϑ4+ω2+1(ϑ4+ω2)2])](ω32(1+ω3)[P5ϑ5+ω3+1(ϑ5+ω3)2+(1P5)ϑ6+ω3+1(ϑ6+ω3)2])

In the same way;

R(4)=P(Y1<Ψ1,Y2<Ψ2,Y3<Ψ3,Y4Ψ4)=[0T1(Ψ)g1(Ψ)][0T2(Ψ)g2(Ψ)][0T3(Ψ)g3(Ψ)][0T¯4(Ψ)g4(Ψ)]=[1(ω12(1+ω1)[P1ϑ1+ω1+1(ϑ1+ω1)2+(1P1)ϑ2+ω1+1(ϑ2+ω1)2])][1(ω22(1+ω2)[P3ϑ3+ω2+1(ϑ3+ω2)2+(1P3)ϑ4+ω2+1(ϑ4+ω2)2])][1(ω32(1+ω3)[P5ϑ5+ω3+1(ϑ5+ω3)2+(1P5)ϑ6+ω3+1(ϑ6+ω3)2])]P7ω42(1+ω4)0(1+Ψ)e(ϑ7+ω4)Ψ+(1P7)ω42(1+ω4)0(1+Ψ)e(ϑ8+ω4)Ψdz=[1(ω12(1+ω1)[P1ϑ1+ω1+1(ϑ1+ω1)2+(1P1)ϑ2+ω1+1(ϑ2+ω1)2])][1(ω22(1+ω2)[P3ϑ3+ω2+1(ϑ3+ω2)2+(1P3)ϑ4+ω2+1(ϑ4+ω2)2])][1(ω32(1+ω3)[P5ϑ5+ω3+1(ϑ5+ω3)2+(1P5)ϑ6+ω3+1(ϑ6+ω3)2])](ω42(1+ω4)[P7ϑ7+ω4+1(ϑ7+ω4)2+(1P7)ϑ8+ω4+1(ϑ8+ω4)2])

So,

R(4)=[1(ω12(1+ω1)[P1ϑ1+ω1+1(ϑ1+ω1)2+(1P1)ϑ2+ω1+1(ϑ2+ω1)2])][1(ω22(1+ω2)[P3ϑ3+ω2+1(ϑ3+ω2)2+(1P3)ϑ4+ω2+1(ϑ4+ω2)2])][1(ω32(1+ω3)[P5ϑ5+ω3+1(ϑ5+ω3)2+(1P5)ϑ6+ω3+1(ϑ6+ω3)2])](ω42(1+ω4)[P7ϑ7+ω4+1(ϑ7+ω4)2+(1P7)ϑ8+ω4+1(ϑ8+ω4)2])

By using Equation (1), we have;

(6)
R4=R(1)+R(2)+R(3)+R(4)

2.4 (Stress) follows two parameter generalized (exp.-dis.) and (Stress) follows a combination of the two (exp.-dis.)

Let the strength follow a combination of the tow (exp-dis.) which is given in Equation (3), and the stress follows a two-parameter generalized (exp-dis.) with p.d.f.;

gi(Ψ)=αiτieτiΨ(1eτiΨ)αi1αi,τi>0,Ψ0,i=1,,n
R(1)=P(Y1Ψ1)=0T¯1(Ψ)g1(Ψ)=0[P1eϑ1Ψ+(1P1)eϑ2Ψ]α1τ1eτ1Ψ(1eτ1Ψ)α11dΨ=α1τ1P10eθ1Ψeτ1Ψ(1eτ1Ψ)α11dΨ+α1τ1(1P1)0eθ2Ψeτ1Ψ(1eτ1Ψ)α11=α1P101Ψα11(1Ψ)ϑ1τ1dΨ+α1(1P1)01Ψα11(1Ψ)ϑ2τ1dΨ=α1P1Beta(α1,1+ϑ1τ1)+α1Beta(α1,1+ϑ2τ1)=α1Г(α1)[P1Г(1+ϑ1τ1)Г(α1+1+ϑ1τ1)+(1P1)Г(1+ϑ2τ1)Г(α1+1+ϑ2τ1)]
R(2)=P(Y1<Ψ1,Y2Ψ2)=[0T1(Ψ)g1(Ψ)][0T¯2(Ψ)g2(Ψ)]=[1(α1Г(α1)[P1Г(1+ϑ1τ1)Г(α1+1+ϑ1τ1)+(1P1)Г(1+ϑ2τ1)Г(α1+1+ϑ2τ1)])]α2P301Ψα21(1Ψ)ϑ3τ1dΨ+α2(1P3)01Ψα21(1Ψ)ϑ4τ2dΨ=[1(α1Г(α1)[P1Г(1+ϑ1τ1)Г(α1+1+ϑ1τ1)+(1P1)Г(1+ϑ2τ1)Г(α1+1+ϑ2τ1)])]α2Г(α2)[P3Г(1+ϑ3τ2)Г(α2+1+ϑ3τ2)+(1P3)Г(1+ϑ4τ2)Г(α2+1+ϑ4τ2)]

So,

R(3)=P(Y1<Ψ1,Y2<Ψ2,Y3Ψ3)=[0T1(Ψ)g1(Ψ)][0T2(Ψ)g2(Ψ)][0T¯3(Ψ)g3(Ψ)]=[1(α1Г(α1)[P1Г(1+ϑ1τ1)Г(α1+1+ϑ1τ1)+(1P1)Г(1+ϑ2τ1)Г(α1+1+ϑ2τ1)])][1(α2Г(α2)[P3Г(1+ϑ3τ2)Г(α2+1+ϑ3τ2)+(1P3)Г(1+ϑ4τ2)Г(α2+1+ϑ4τ2)])]α2P301Ψα21(1Ψ)ϑ3τ1dΨ+α2(1P3)01Ψα21(1Ψ)ϑ4τ2dΨ=[1(α1Г(α1)[P1Г(1+ϑ1τ1)Г(α1+1+ϑ1τ1)+(1P1)Г(1+ϑ2τ1)Г(α1+1+ϑ2τ1)])][1(α2Г(α2)[P3Г(1+ϑ3τ2)Г(α2+1+ϑ3τ2)+(1P3)Г(1+ϑ4τ2)Г(α2+1+ϑ4τ2)])]α3Г(α3)[P5Г(1+ϑ5τ2)Г(α3+1+ϑ5τ3)+(1P5)Г(1+ϑ6τ3)Г(α3+1+ϑ6τ3)]

In the same way:

R(4)=P(Y1<Ψ1,Y2<Ψ2,Y3<Ψ3,Y4Ψ4)=[0T1(Ψ)g1(Ψ)][0T2(Ψ)g2(Ψ)][0T3(Ψ)g3(Ψ)][0T¯4(Ψ)g4(Ψ)]=[1(α1Г(α1)[P1Г(1+ϑ1τ1)Г(α1+1+ϑ1τ1)+(1P1)Г(1+ϑ2τ1)Г(α1+1+ϑ2τ1)])]=[1(α1Г(α1)[P1Г(1+ϑ1τ1)Г(α1+1+ϑ1τ1)+(1P1)Г(1+ϑ2τ1)Г(α1+1+ϑ2τ1)])][1(α2Г(α2)[P3Г(1+ϑ3τ2)Г(α2+1+ϑ3τ2)+(1P3)Г(1+ϑ4τ2)Г(α2+1+ϑ4τ2)])][1(α3Г(α3)[P5Г(1+ϑ5τ2)Г(α3+1+ϑ5τ3)+(1P5)Г(1+ϑ6τ3)Г(α3+1+ϑ6τ3)])]α4Г(α4)[P7Г(1+ϑ7τ4)Г(α4+1+ϑ7τ4)+(1P7)Г(1+ϑ8τ4)Г(α4+1+ϑ8τ4)]

Therefore, we have;

(7)
R4=R(1)+R(2)+R(3)+R(4)

3. Estimation of R 4

In this section, we will estimate R 4 of the different distributions mentioned above using the method of maximum likelihood estimation. For all four distributions, we consider P and (1-P) as two sub-populations with mixing. Also we assume f1(y) and f2(y) be P.d.f. with parameters ϑ1 and ϑ2 .

3.1 (Stress) follows one parameter (exp.-dis.)

Let Ψ ij be r.s. from one parameter (exp-dis.) with parameter ʎi .

Where, i = 1,…,n, j = 1,…, ki . The L.f. is given by8 and9

L(ϑ1,ϑ2,P,ʎi/Ψij,yij)=i=1n[j=12Pjf(yj,ϑj)]i=1nj=1ki[μieμiΨij]=(n!/n1!n2!).Pn1(1P)n2.ϑ1n1.ϑ2n2e[i=1n1ϑ1y1ii=1n2ϑ2y2i]μikieμij=1kiΨij
Ln(L)=Ln(n!n1!n2!)+(n1.Ln(P))+(n2.Ln(1P))+(n1.Lnϑ1)+(n2Lnϑ2)i=1n1ϑ1y1ii=1n2ϑ2y2i+kilnμiμij=1kiΨij

We use; ( lnLP)=0,(lnLϑ1)=0,( lnLϑ2)=0 and lnLμi=0 .

Therefore, we get; P`=n1/(n1+n2),ϑ`1=n1/j=1n1y1j,ϑ`2=n2/j=1n2y2jandμî=kij=1kiΨij

So, we have;

(8)
R̂4=R̂(1)+R̂(2)+R̂(3)+R̂(4)

3.2 (Stress) follows two parameter (exp.-dis.)

Let Ψ ij be r.s. from two parameter (exp-dis.) with parameter αi,£i[1]; Where, i = 1,…,n, j = 1,…, ki . The L.f. is given by;

L(ϑ1,ϑ2,P,£i,αi/Ψij,yij)=i=1n[j=12Pjf(yj,ϑj)]i=1nj=1ki[1£ie(Ψijαi)/£i]=(n!/n1!n2!).Pn1(1P)n2.ϑ1n1.ϑ2n2e[i=1n1ϑ1y1ii=1n2ϑ2y2i](1£i)kie1£ij=1ki(Ψijαi)
Ln(L)=Ln(n!n1!n2!)+(n1.Ln(P))+(n2.Ln(1P))+(n1.Lnϑ1)+(n2Lnϑ2)i=1n1ϑ1y1ii=1n2ϑ2y2ikiln£i1£ij=1kiln(Ψijαi)

We use; ( lnLP)=0,(lnLϑ1)=0,( lnLϑ2)=0,lnLαi=0 and lnL£i=0.

P`=n1/(n1+n2),ϑ`1=n1/j=1n1y1j,ϑ`2=n2/j=1n2y2jand£î=j=1kiln(Ψijαi)ki

Where; αi= min (Ψij) , So, we have;

(9)
R̂4=R̂(1)+R̂(2)+R̂(3)+R̂(4)

3.3 (Stress) follows one parameter Lindley distribution

Let Ψ ij be r.s. from one parameter (exp-dis.) with parameter ωi . Where, i = 1,…,n, j = 1,…, ki . The L.f. is given by10;

L(ϑ1,ϑ2,P,ωi/Ψij,yij)=i=1n[j=12Pjf(yj,ϑj)]i=1nj=1kiωi2(1+ωi)(1+Ψij)eωiΨij=(n!/n1!n2!).Pn1(1P)n2.ϑ1n1.ϑ2n2e[i=1n1ϑ1y1ii=1n2ϑ2y2i]ωi2ki(1+ωi)ki[j=1ki(1+Ψij)]eωij=1ki(Ψij)
Ln(L)=Ln(n!n1!n2!)+(n1.Ln(P))+(n2.Ln(1P))+(n1.Lnϑ1)+(n2Lnϑ2)i=1n1ϑ1y1ii=1n2ϑ2y2i+2kilnωiωij=1kiΨijkiln(1+ωi)+j=1kiln(1+Ψij)

We use; ( lnLP)=0,(lnLϑ1)=0,( lnLϑ2)=0 and lnLωi=0 .

Therefore, we get; P`=(n1n1+n2),ϑ`1=n1/j=1n1y1j,ϑ`2=n2j=1n2y2jandωî=(1Ψ¯i)+Ψ¯i+6Ψ¯i+12Ψ¯i

Where; Ψ¯i=j=1ki(Ψij)ki . So, we have;

(10)
R̂4=R̂(1)+R̂(2)+R̂(3)+R̂(4)

3.4 (Stress) follows two parameter generalized (exp.-dis.)

Let Ψ ij be r.s. from two parameter (exp.-dis.) with parameter αi,τi . Where, i = 1,…,n, j = 1,…, ki . The L.f is given by;

L(ϑ1,ϑ2,P,τi,αi/Ψij,yij)=i=1n[j=12Pjf(yj,ϑj)]i=1nj=1ki[αiτieτiΨij(1eτiΨij)αi1]=(n!n1!n2!).Pn1(1P)n2.ϑ1n1.ϑ2n2e[i=1n1ϑ1y1ii=1n2ϑ2y2i]αikiτikieτij=1ki(Ψij)(j=1ki(1eτiΨij)αi1)
Ln(L)=Ln(n!n1!n2!)+(n1.Ln(P))+(n2.Ln(1P))+(n1.Lnϑ1)+(n2Lnϑ2)i=1n1ϑ1y1ii=1n2ϑ2y2i+kiLnαi+kiLnτiτij=1ki(Ψij)+(αi1)j=1kiLn(1eτiΨij)

We use; ( lnLP)=0,(lnLϑ1)=0,( lnLϑ2)=0,lnLαi=0 and lnLτi=0.

P`=n1/(n1+n2),ϑ`1=n1/j=1n1y1j,ϑ`2=n2/j=1n2y2j,αî=kij=1kiln(1eτiΨij)

And τî=[j=1ki((ΨijeτiΨij)/(1eτiΨij))j=1kiln(1eτiΨij)+1kij=1kiΨij(1eτiΨij)]1

So, we have;

(11)
R̂4=R̂(1)+R̂(2)+R̂(3)+R̂(4)

4. The simulation manner

In this section, the numerical results are presented to compare the performance of the different reliability values obtained for four different distributions.

4.1 (Stress) follows one parameter (exp.-dis.) and (Stress) follows a combination of the two (exp.-dis.)

The numerical results can be seen in the Tables 1, 2, 3 and 4:

Table 1. Values of R(1),R(2),R(3),R(4) and R4 , pi=0.2(i=1,3,5,7);θi=0.5(i=1,2,8).

λ1 λ2 λ3 λ4 R(1) R (2) R (3) R (4) R 4
0.30.30.30.30.37500.23440.14650.09160.8474
0.50.50.50.50.50000.25000.12500.06250.9375
0.70.70.70.70.58330.24310.10130.04220.9699
0.90.90.90.90.64290.22960.08200.02930.9837
1.11.11.11.10.68750.21480.06710.02100.9905
1.51.51.51.50.75000.18750.04690.01170.9961

Table 2. Values of R(1),R(2),R(3),R(4) and R4 , pi=0.2(i=1,3,5,7);θi=0.5(i=1,2,8) .

λ1 λ2 λ3 λ4 R(1) R (2) R (3) R (4) R 4
0.30.50.70.90.37500.31250.18230.08370.9535
0.81.01.21.40.61540.25640.09050.02780.9901
1.21.41.61.80.70590.21670.05900.01440.9960
1.82.02.22.40.59580.32330.06590.01240.9974
2.22.42.62.80.81480.15330.02680.00440.9992

Table 3. Values of R(1),R(2),R(3),R(4) and R4 , pi=0.2(i=1,3,5,7);λi=1.5(i=1,2,3,4) .

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 R(1) R (2) R (3) R (4) R 4
0.10.20.30.40.50.60.70.80.89340.08510.01550.00390.9980
0.20.30.40.50.60.70.80.90.84310.84310.11890.00750.9956
0.30.40.50.60.70.80.910.79820.14560.03700.01160.9924
0.50.60.70.80.91.01.11.20.72140.18330.05760.02110.9834

Table 4. Values of R(1),R(2),R(3),R(4) and R4 , θi=0.5(i=1,2,6);λi=1.5(i=1,2,3,4) .

p1 p3 p5 p7 R(1) R (2) R (3) R (4) R 4
0.10.20.30.40.75000.18750.04690.01170.9961
0.30.40.50.60.75000.18750.04690.01170.9961
0.50.60.70.80.75000.18750.04690.00780.9922
0.70.80.910.75000.18750.04690.01170.9961

4.2 (Stress) follows two parameter (exp.-dis.) and (Stress) follows a combination of the two (exp.-dis.)

The numerical results can be seen in the Tables 5, 6, 7 and 8:

Table 5. Values of R(1),R(2),R(3),R(4) and R4 , pi=0.2(i=1,3,5,7);θi=0.5(i=1,2,8),αi=1.5.

β1 β2 β3 β4 R(1) R (2) R (3) R (4) R (1)
0.30.30.30.30.41080.24200.14260.08400.8794
0.50.50.50.50.37790.23510.14630.09100.8502
0.70.70.70.70.34990.22750.14790.09610.8214
0.90.90.90.90.32580.21960.14810.09980.7934
1.11.11.11.10.30480.21190.14730.10240.7664
1.51.51.51.50.26990.19710.14390.10500.7159

Table 6. Values of R(1),R(2),R(3),R(4) and R4 , pi=0.2(i=1,3,5,7);θi=0.5(i=1,2,8),αi=1.5 .

β1 β2 β3 β4 R(1) R (2) R (3) R (4) R 4
0.30.50.70.90.41080.22270.12830.07760.8393
0.81.01.21.40.33740.20870.13400.08890.7690
1.21.41.61.80.29520.19580.13360.09330.7179
1.82.02.22.40.24860.17750.12910.09550.6507
2.22.42.62.80.22490.16640.12500.09520.6115

Table 7. Values of R(1),R(2),R(3),R(4) and R4 , pi=0.2(i=1,3,5,7);αi=1.5(i=1,2,3,4),βi=0.3(i=1,2,3,4) .

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 R(1) R (2) R (3) R (4) R 4
0.10.20.30.40.50.60.70.80.72620.14030.04780.02160.9359
0.20.30.40.50.60.70.80.90.60780.16840.06720.03320.8766
0.30.40.50.60.70.80.910.50900.17680.07920.04190.8069
0.50.60.70.80.91.01.11.20.35780.16290.08540.04970.6557

Table 8. Values of R(1),R(2),R(3),R(4) and R4 , θi=0.5(i=1,2,6);αi=1.5(i=1,2,3,4),βi=0.3(i=1,2,3,4) .

p1 p3 p5 p7 R(1) R (2) R (3) R (4) R 4
0.10.20.30.40.41080.24200.14260.08400.8794
0.30.40.50.60.41080.24200.14260.08400.8794
0.50.60.70.80.41080.24200.14260.08400.8794
0.70.80.910.41080.24200.14260.08400.8794

4.3 (Stress) follows a one-parameter Lindley distribution, and (Stress) follows a combination of two (exp.-dis.)

The numerical results can be seen in the Tables 9, 10, 11 and 12:

Table 9. Values of R(1),R(2),R(3),R(4) and R4 , pi=0.2(i=1,3,5,7);θi=0.5(i=1,2,8).

γ1 γ2 γ3 γ4 R(1) R (2) R (3) R (4) R 4
0.30.30.30.30.19470.15680.12630.10170.5795
0.50.50.50.50.33330.22220.14810.09880.8025
0.70.70.70.70.44040.24640.13790.07720.9019
0.90.90.90.90.52200.24950.11930.05700.9478
1.11.11.11.10.58520.24270.10070.04180.9704
1.51.51.51.50.67500.21940.07130.02320.9888

Table 10. Values of R(1),R(2),R(3),R(4) and R4 , pi=0.2(i=1,3,5,7);θi=0.5(i=1,2,8) .

γ1 γ2 γ3 γ4 R(1) R (2) R (3) R (4) R 4
0.30.50.70.90.19470.26840.23640.15680.8564
0.81.01.21.40.48390.28670.14030.05850.9693
1.21.41.61.80.61150.25490.09250.02970.9886
1.82.02.22.40.72180.20770.05410.01290.9965
2.22.42.62.80.76770.18250.03990.00810.9982

Table 11. Values of R(1),R(2),R(3),R(4) and R4 , pi=0.2(i=1,3,5,7);γi=1.5(i=1,2,3,4) .

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 R(1) R (2) R (3) R (4) R 4
0.10.20.30.40.50.60.70.80.85550.10610.02470.00780.9940
0.20.30.40.50.60.70.80.90.79040.14350.03980.01410.9878
0.30.40.50.60.70.80.910.73390.17060.05420.02100.9798
0.50.60.70.80.91.01.11.20.64110.20390.07900.03640.9604

Table 12. Values of R(1),R(2),R(3),R(4) and R4 , θi=0.5(i=1,2,6);γi=1.5(i=1,2,3,4) .

p1 p3 p5 p7 R(1) R (2) R (3) R (4) R 4
0.10.20.30.40.67500.21940.07130.02320.9888
0.30.40.50.60.67500.21940.07130.02320.9888
0.50.60.70.80.67500.21940.07130.02320.9888
0.70.80.910.67500.21940.07130.02320.9888

4.4 (Stress) follows two parameter generalized (exp.-dis.) and (Stress) follows a combination of the two (exp.-dis.)

The numerical results can be seen in the Tables 13, 14, 15 and 16:

Table 13. Values of R(1),R(2),R(3),R(4) and R4 , pi=0.2(i=1,3,5,7);θi=0.5(i=1,2,8);αi=1.5(i=1,2,3,4) .

λ1 λ2 λ3 λ4 R(1) R (2) R (3) R (4) R 4
0.30.30.30.30.26930.19680.14380.10510.7150
0.50.50.50.50.40000.24000.14400.08640.8704
0.70.70.70.70.49270.24990.12680.06430.9338
0.90.90.90.90.56120.24630.10810.04740.9629
1.11.11.11.10.61360.23710.09160.03540.9777
1.51.51.51.50.68830.21450.06690.02080.9906

Table 14. Values of R(1),R(2),R(3),R(4) and R4 , pi=0.2(i=1,3,5,7);θi=0.5(i=1,2,8);αi=1.5(i=1,2,3,4) .

λ1 λ2 λ3 λ4 R(1) R (2) R (3) R (4) R 4
0.30.50.70.90.26930.29230.21600.12480.9024
0.81.01.21.40.52940.27720.12290.04740.9769
1.21.41.61.80.63540.24520.08390.02580.9903
1.82.02.22.40.72790.20380.05240.01240.9966
2.22.42.62.80.76730.18220.04020.00830.9980

Table 15. Values of R(1),R(2),R(3),R(4) and R4 , pi=0.2(i=1,3,5,7);αi=1.5(i=1,2,3,4);λi=0.3(i=1,2,3,4) .

ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6 ϑ7 ϑ8 R(1) R (2) R (3) R (4) R 4
0.10.20.30.40.50.60.70.80.54710.15360.07090.04050.8120
0.20.30.40.50.60.70.80.90.42230.16190.08460.05180.7206
0.30.40.50.60.70.80.910.33910.15640.08950.05780.6428
0.50.60.70.80.91.01.11.20.23670.13540.08740.06110.5207

Table 16. Values of R(1),R(2),R(3),R(4) and R4, θi=0.5(i=1,2,6);αi=1.5(i=1,2,3,4);λi=0.3(i=1,2,3,4).

p1 p3 p5 p7 R(1) R (2) R (3) R (4) R 4
0.10.20.30.40.26930.19680.14380.10510.7150
0.30.40.50.60.26930.19680.14380.10510.7150
0.50.60.70.80.26930.19680.14380.10510.7150
0.70.80.910.26930.19680.14380.10510.7150

5. Conclusions

5.1 From Tables 1, 2, 3 and 4 for one parameter exponential; for fixed values Pi=0.2(i=1,3,5,7); ϑi=0.5(i=1,2,8) with varying values of λi(i=1,2,3,4) , we observed that values of R (1) and R 4 have increased whereas R (2), R (3) and R (4) are decreased. Also if fixed values λi=1.5(i=1,2,3,4) with varying values ϑi(i=1,2,8) it is observed that values of R (1) and R 4 have decreased whereas R (2), R (3) and R (4) are increased. But if the fixed values ϑi=0.5(i=1,2,8) and λi=1.5(i=1,2,3,4) with varying values Pi(i=1,3,5,7) , it is observed that there is a consistency of values R (1), R (2), R (3), R (4) and R 4.

5.2 From Tables 5, 6, 7 and 8 for two parameter generalized exponential distribution; for fixed values Pi=0.2(i=1,3,5,7);ϑi=0.5(i=1,2,8) αi(i=1,,4) with varying values of £i(i=1,2,3,4), we observed that values of R (3) and R (4) have increased whereas R (1), R (2) and R 4 are decreased. In addition, if fixed values αi,£i(i=1,,4) with varying values ϑi(i=1,2,8) it is observed that the values of R (1) and R 4 decrease, whereas R (2), R (3), and R (4) increase. But if the fixed values ϑi=0.5(i=1,2,8) and αi,£i(i=1,,4) with varying values Pi(i=1,3,5,7) , it is observed that there is a consistency of values R (1), R (2), R (3), R (4) and R 4.

5.3 From Tables 9, 10, 11 and 12 for one parameter Lindley distribution; for fixed values Pi=0.2(i=1,3,5,7); ϑi=0.5(i=1,2,8) with varying values of τi(i=1,2,3,4) , we observed that values of R (1), R (2) and R 4 have increased where R (3) and R (4) are decreased. Also if fixed values τi=1.5(i=1,2,3,4) with varying values ϑi(i=1,2,8) it is observed that values of R (1) and R 4 have decreased whereas R (2), R (3) and R (4) are increased. But if the fixed values ϑi=0.5(i=1,2,8) and λi=1.5(i=1,2,3,4) with varying values Pi(i=1,3,5,7) , it is observed that there is a consistency of values R (1), R (2), R (3), R (4) and R 4.

5.4 From the Tables 13, 14, 15 and 16 for two parameter exponential; for following fixed values Pi=0.2(i=1,3,5,7);ϑi=0.5(i=1,2,8) αi(i=1,,4) with varying values of ʎi(i=1,2,3,4) , we observed that values of R (1), R (2) and R4 have increased whereas R (3) and R (4) are decreased. Also if fixed values αi,ʎi(i=1,,4) with varying values ϑi(i=1,2,8) it is observed that values of R (1) and R 4 have decreased where as R (2), R (3) and R (4) show increasing. But if the fixed values ϑi=0.5(i=1,2,8) and αi,ʎi(i=1,,4) with varying values Pi(i=1,3,5,7) , it is observed that there is a consistency of values R (1), R (2), R (3), R (4) and R 4.

Comments on this article Comments (0)

Version 1
VERSION 1 PUBLISHED 22 Dec 2025
Comment
Author details Author details
Competing interests
Grant information
Copyright
Download
 
Export To
metrics
Views Downloads
F1000Research - -
PubMed Central
Data from PMC are received and updated monthly.
- -
Citations
CITE
how to cite this article
Ahmed I, Abdulrazzaq HA and Mohammed MJ. R 4- STANDBY- STRENGTH-STRESS MODEL [version 1; peer review: awaiting peer review]. F1000Research 2025, 14:1423 (https://doi.org/10.12688/f1000research.172210.1)
NOTE: If applicable, it is important to ensure the information in square brackets after the title is included in all citations of this article.
track
receive updates on this article
Track an article to receive email alerts on any updates to this article.

Open Peer Review

Current Reviewer Status:
AWAITING PEER REVIEW
AWAITING PEER REVIEW
?
Key to Reviewer Statuses VIEW
ApprovedThe paper is scientifically sound in its current form and only minor, if any, improvements are suggested
Approved with reservations A number of small changes, sometimes more significant revisions are required to address specific details and improve the papers academic merit.
Not approvedFundamental flaws in the paper seriously undermine the findings and conclusions

Comments on this article Comments (0)

Version 1
VERSION 1 PUBLISHED 22 Dec 2025
Comment
Alongside their report, reviewers assign a status to the article:
Approved - the paper is scientifically sound in its current form and only minor, if any, improvements are suggested
Approved with reservations - A number of small changes, sometimes more significant revisions are required to address specific details and improve the papers academic merit.
Not approved - fundamental flaws in the paper seriously undermine the findings and conclusions
Sign In
If you've forgotten your password, please enter your email address below and we'll send you instructions on how to reset your password.

The email address should be the one you originally registered with F1000.

Email address not valid, please try again

You registered with F1000 via Google, so we cannot reset your password.

To sign in, please click here.

If you still need help with your Google account password, please click here.

You registered with F1000 via Facebook, so we cannot reset your password.

To sign in, please click here.

If you still need help with your Facebook account password, please click here.

Code not correct, please try again
Email us for further assistance.
Server error, please try again.