ALL Metrics
-
Views
-
Downloads
Get PDF
Get XML
Cite
Export
Track
Research Note

Quantitative trait loci mapping of dauer larvae development in growing populations of Caenorhabditis briggsae

[version 1; peer review: 3 approved with reservations]
PUBLISHED 15 Dec 2015
Author details Author details
OPEN PEER REVIEW
REVIEWER STATUS

Abstract

The life cycles of many free-living nematodes contain developmental switches that allow individuals to either develop directly to adulthood, or to arrest development as a stress resistant and long-lived dauer larval stage. Here, in a panel of Caenorhabditis briggsae recombinant inbred lines derived from the isolates HK104 x AF16, we use methodologies developed for C.elegans to map quantitative trait loci (QTLs) affecting the number of dauer larvae present at the point of food patch exhaustion. These analyses provide strong support for three QTLs and are suggestive of a further two.

Keywords

dauer larvae, Caenorhabditis briggsae, QTL, nematode, natural variation

Introduction

Caenorhabditis elegans is an important model species, but there is a need to further understand its ecology and that of the other species with which it is associated1–3. Active, growing, populations of Caenorhabditis nematodes are normally associated with nutrient and bacteria-rich substrates such as rotten fruit or very fresh compost1,3,4. Growing populations can reach very large sizes, and worms would be expected to have optimized fitness (population growth and/or the production of dispersal stages) under such conditions. Appropriate development of growing worms as dauer larvae, the developmentally-arrested alternate third larval stage, is therefore likely to be central to genotype survival.

We have previously looked at dauer larvae development in growing populations of C. elegans5–7. These analyses identified both extensive variation between wild isolates in the number of dauer larvae present when a bacterial food patch is exhausted6 and large numbers of QTLs effecting this trait in introgression lines (ILs) produced from the isolates N2 and CB48566,7. Naturally, C. elegans has however been found to be associated with both C. remanei and C. briggsae1,3,8. Here, using the methodologies developed for C. elegans, we have investigated dauer larvae formation in growing populations in a panel of C. briggsae recombinant inbred lines (RILs) produced from the isolates AF16 and HK1049.

Methods

The C. briggsae RILs were generated from reciprocal crosses between males and sperm-depleted hermaphrodites of isolates HK104 and AF169 and were obtained from Asher Cutter (University of Toronto). Worms were maintained using standard methods10 and all assays were conducted at 20°C. Assays were performed as previously described6, with populations initiated from single fourth larval stage worms (L4s) grown from synchronized, arrested, L1s with 100 μl of a 20% w/v suspension of Escherichia coli in water and monitored daily until food exhaustion. At this point, the population size and the number of dauer larvae were determined5,6. RILs were analyzed in three experimental blocks with AF16 and HK104 assayed in each block and five populations initiated per genotype. Treatments (genotypes) were randomized within blocks and plates were blind coded such that counts were performed without knowledge of worm genotype. Populations that failed to grow were discarded.

The RILs have previously been genotyped at 451 markers distributed across all six chromosome pairs9 and these data were used for this analysis. QTL mapping was performed by composite interval mapping (CIM) using QTL Cartographer v2.511. Genome-wide thresholds (0.05) were estimated based on 1000 permutations of the data and CIM analysis undertaken with a 1.0cM walk speed.

Results

BlockLinePopDauer
1PB1103770000
1PB1103300000
1PB110329000320
1PB11033700040
1PB11047200020
1PB1104460000
1PB110458000110
1PB11045500010
1PB1104590000
1PB1105630000
1PB1105630000
1PB1105390000
1PB11051140000
1PB1105370000
2PB110634000870
2PB110653000200
2PB1106470001350
2PB110661000830
2PB110652000270
2PB11072500050
2PB110745000120
2PB11077800060
2PB11075500020
2PB1107580000
3PB110936800201
3PB110940000319
3PB110937600205
3PB110967200200
3PB110931200263
1PB1110540000
1PB1110610000
1PB1110600000
1PB1110670000
1PB11107300010
1PB11111800030
1PB11113500080
1PB11114100090
1PB1111340000
1PB111145000140
1PB111270
1PB1112380000
1PB111230000170
1PB1112460000
1PB1112680000
2PB111345000860
2PB111327000650
2PB111339000810
2PB111335000850
2PB111339000770
1PB11152900030
1PB111566000120
1PB1115420000
1PB11154000040
1PB111641000970
1PB11165300020
1PB111616000800
1PB111621000180
1PB1117460001250
1PB1117230001310
1PB111746000750
1PB1117420001020
1PB11177000060
1PB1118320000
1PB11185400020
1PB11186100020
1PB11185400010
1PB1118320000
1PB1119270001350
1PB111921000360
1PB111931000840
1PB1119400001050
3PB11212400037
3PB11211920046
1PB1121630000
1PB112162000
1PB112168000610
1PB1121860001010
1PB11216900020
2PB112545000640
2PB11255000060
2PB112525000690
2PB112557000450
2PB1125580001030
1PB112654000240
1PB112662000720
1PB112645000800
1PB112653000840
1PB112663000820
1PB112716000620
1PB112761000290
1PB11273500050
1PB112754000150
1PB11287000310
1PB112817000380
1PB112824000410
1PB112838000180
2PB112929000320
2PB112936000300
2PB112942000170
2PB112964000690
2PB112949000490
2PB113042000980
2PB113051000700
2PB113037000420
2PB113035000230
2PB11303200070
2PB113236000560
2PB113252000770
2PB113241000350
2PB113245000840
2PB113247000710
2PB113344000100
2PB113334000340
2PB113321000380
2PB113354000100
2PB113337000150
1PB1133260000
1PB11344200070
1PB113443000900
1PB113451000730
1PB1134540001070
1PB113435000490
1PB11356000050
1PB1135440000
1PB11353900010
1PB1135560000
1PB1135520000
1PB113612000330
1PB113647000560
1PB113632000210
1PB1136480001040
1PB113640000360
2PB113743000210
2PB113755000190
2PB113727000250
2PB113734000290
2PB113727000170
2PB113841000320
2PB11385800030
2PB11384500060
2PB113890000100
1PB113935000870
1PB113948000660
1PB113967000120
1PB11391800020
1PB1139480000
1PB114059000310
1PB114053000620
1PB114035000550
1PB114042000910
1PB114025000470
1PB114150000720
1PB11417100060
1PB114177000
1PB11412700020
1PB1141340001040
2PB114235000340
2PB114265000680
2PB1142520001260
2PB1142520001350
1PB1143550000
1PB114352000260
1PB11435700010
1PB114358000960
2PB1144490001010
2PB114453000830
1PB114542000110
1PB114541000240
1PB1145300000
1PB1145230000
1PB114531000370
1PB114625000770
1PB114632000470
1PB114623000570
1PB1146139000760
1PB1146390000
1PB11473100080
1PB11479000130
1PB114738000150
1PB114755000270
1PB114754000370
2PB11484300040
2PB114831000100
2PB114833000110
1PB1149900000
1PB1149240000
1PB11499300040
1PB1149270000
1PB1149330000
2PB115144000710
2PB115135000690
2PB115149000510
2PB115147000390
1PB115272000260
1PB1152105000700
1PB11522300010
1PB115270000230
1PB115263000890
2PB115342000210
This is a portion of the data; to view all the data, please download the file.
Dataset 1.The number of dauer larvae and the population size at food exhaustion for replicate populations of the RILs and the respective AF16 and HK104 controls from three experimental blocks.
The AF16 and HK104 data are presented in Figure 1. The RIL data are used to calculate the trait values used in QTL mapping.
00.0060040.0120080.0241090.0301130.0422140.0543160.060320.0848430.1031170.1948530.2131270.2906790.302780.3273040.4486760.4795290.491630.5161540.5221580.5281620.5851630.6034370.634290.6402940.6585680.6830920.6890960.7011970.7072010.7132050.7314790.7374830.7434860.7555880.7615920.7675960.7796970.7857010.7978020.8286550.8346590.8784150.8905160.915040.9523030.9768271.0271611.0516851.0637871.0758881.1196441.1317451.1377491.1947511.2517521.3434881.3494921.3803451.4441031.5430851.593421.6242721.6680281.6988811.717155
00.0060040.0120080.0180120.1243470.1303510.1424520.1669760.1790770.2036010.2473570.2656310.3226320.3409060.3717590.4026120.4086150.4268890.4328930.4388970.469750.5135060.538030.5501310.5622330.5867560.592760.5987640.6170380.6353120.6535860.659590.6655940.6715980.6776020.7148640.7208680.732970.7389740.7510750.7755990.78770.7937040.8058050.8118090.8178130.8299140.8359180.892920.9499211.0712941.0833951.1016691.1389321.1634551.1694591.1815611.2318961.2627481.2810221.2870261.3933611.4054621.4363151.4423191.454421.4665221.530281.5485531.5606551.5789291.5849331.5909371.6092111.6152151.6212191.633321.6393241.645328
00.0060040.0181050.0302070.054730.0792540.0852580.0912620.1095360.1665370.1786390.2031620.2214360.227440.3120340.3303080.3873090.4055830.476190.4944640.5004680.5125690.569570.6004230.6125240.6497870.680640.6866440.7239070.7360080.7481090.7541130.7601170.7661210.7721250.7781290.7841330.8024070.8206810.8389550.8449580.8632320.8692360.8813380.8873420.9118650.9178690.9238730.9421470.9604210.9912740.9972781.0093791.0153831.0336571.0457581.102761.1272831.1332871.1515611.1575651.1635691.1695731.2004261.2376891.249791.2557941.2740681.3049211.3294451.3932021.4177261.4298281.4801631.486166
00.0060040.049760.0557640.1060990.1306230.1678850.2051480.2111520.2420050.2541060.2849590.341960.3540620.3600650.3783390.3843430.42810.4817570.4969350.5277870.558640.5707410.5828430.6201060.6261090.6443830.6503870.6686610.6746650.6806690.6866730.6987740.7108760.7168790.7289810.7349850.7595080.771610.7898840.7958880.8018920.8264150.8446890.8629630.8750650.8933390.9178620.9423860.948390.9543940.9603980.9664020.9785031.0030271.0090311.0150351.0210391.033141.0452411.0760941.0820981.1193611.1566241.1687251.1808261.2245821.2366841.2426881.245671.326731.3327341.3387381.3695911.4333491.4706121.4827131.4887171.5593241.5653281.596181.6144541.6265561.644831.6508341.6568381.6689391.732697
00.0308530.0368570.0489580.0549620.0609660.079240.0852440.1097680.140620.1466240.1648980.1769990.1952730.2012770.2195510.2255550.2315590.2498330.2681070.2741110.3113740.3296480.3479220.3661960.37220.4030530.4213260.4783280.4843320.4964330.5272860.5581380.615140.6334140.6394180.6576920.6636960.6696990.6757030.6817070.6877110.7059850.7305090.7365130.7425170.7485210.7667950.7727990.7910720.8155960.8276980.8459720.8642450.8825190.8885230.9006250.9314770.962330.9868541.0051281.191631.2037311.2220051.2402791.2648031.2769041.2890051.3135291.325631.3377321.3437361.4212871.4458111.4518151.5364081.5485091.5606111.5727121.5972361.621761.6462841.6522871.6582911.6642951.6702991.6824011.6945021.706603
Dataset 2.Marker distances (from Ross et al., 2011) for informative markers in the RILs analysed.
datacb34755cb9210cb9192cb6850cb62971cb62993cbv25636cb2044cb61995cb45568cb45465cb8644cb15282cb15284cbv29577cb66726cb66765cb66841cb66970cb57701cbv18421cb57379cb1410cb44525cb44577cb44346cb16165cb16121cb16081cb51634cb38955cb21981cb66225cb14869cb28302cb54162cb54171cb54270cb54288cb54371cb54417cb54442cb25626cb63977cb19771cb37388cb19687cb19655cb55599cb55695cb62188cb3139cb64078cbv26864cb64120cb36822cb69435cb58901cb58858cbv20005cb57857cb44738cb23738cb23809cbv25999cb987cb41559cb41422cb39492cb41334cb18765cb62203cb61868cb70341cb16372cb66334cb44149cb44178cb55400cb55366cb55256cb55205cb55201cbv16403cb55101cb13018cb41016cb6450cb51910cb3372cb3404cb16739cb16720cbv13858cb52181cb4596cb54826cb4210cb23118
ril3_PB1105AAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril3_PB1106AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABB
ril3_PB1107BBBBBBBBBBBBBBBAAAAAAAABBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBB
ril3_PB1112AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ril3_PB1113AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ril3_PB1115AAABBBBBBBAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBB
ril3_PB1116BBAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ril3_PB1117AAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAABBBBB
ril3_PB1118BBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ril3_PB1119AAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBB
ril3_PB1121BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril3_PB1125BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril3_PB1126AAAAAAAABBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril3_PB1127AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBAAAAAAAAAAAAAAABBBBBBBBBBBBBBAAAA
ril3_PB1128AAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAABBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAABBAAAAAAAAAAA
ril3_PB1129BBBBBBBBBBBBAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAA
ril3_PB1130AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril3_PB1132BBBBBBBBBBABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBB
ril3_PB1133AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril3_PB1134AAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAABBBBAAAAAAAAAAAAAAAAAAAABBBAAAAAAAAAA
ril3_PB1135BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril3_PB1136BBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAA
ril3_PB1137AAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ril3_PB1138BBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ril3_PB1139AAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril3_PB1140AAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril3_PB1141AAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril3_PB1142BBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAA
ril3_PB1143AAAAAAABBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril3_PB1144AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril3_PB1145BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAABBAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril3_PB1146AAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAA
ril3_PB1147BBBBBBBBBBBBBBBAAAAAAAAAAAAAAABBBBBBBBBBAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril3_PB1148BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAABBAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBB
ril3_PB1149BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril3_PB1151AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ril3_PB1153BBBBBBBBBBBBBBBBBBBBBAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril3_PB1154AAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBB
ril3_PB1155BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril3_PB1156BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAABBBBBBBB
ril3_PB1157AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAABBBBBBBBB
ril3_PB1158BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBAAAAAAAAAAAAAAAAAAAAAAAA
ril3_PB1159BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAA
ril3_PB1162AAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ril3_PB1163BBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ril3_PB1164AAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBB
ril3_PB1165AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril3_PB1166BBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAABBBBBBBBBAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril3_PB1167BBBBBBBBBBAAAAABBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril3_PB1168BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAABBBBBBBBBBB
ril3_PB1169AAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ril3_PB1170BBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril3_PB1171BBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBB
ril3_PB1172AAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAA
ril3_PB1173BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAABBBBBBBBBBBBBAAAAAAAAAAAAAAABBBBB
ril3_PB1174AAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ril3_PB1177BBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril3_PB1178AAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril3_PB1179BBBBBBBBBBBBBBBAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ril3_PB1182AAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBA
ril3_PB1185BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAABBBBBAAAAAAAAAABBBBBBBAAAAAAABBBBBBBAAAAAAAAAAAA
ril3_PB1187AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAA
ril3_PB1189AAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAA
ril3_PB1191BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ril3_PB1192BBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAABBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ril3_PB1193BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril4_PB1206BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAABBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAA
ril4_PB1214AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril4_PB1215BBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ril4_PB1217BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBAAABBB
ril4_PB1218AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAA
ril4_PB1219BBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ril4_PB1220BBBBBBBBBBBAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril4_PB1222AAAAAAAAAAAAAAAAAAAAABBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBAAAAAAAAAAAAAAABBBAAAAAAAAAAAAAAAAAA
ril4_PB1231AAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAABBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ril4_PB1232BBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBAABBAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBB
ril4_PB1233BBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBB
ril4_PB1235BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBB
ril4_PB1240BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAABBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAA
ril4_PB1241BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAABBBBBBBBBBB
ril4_PB1243BBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ril4_PB1245AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril4_PB1246BBBBBBBBAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril4_PB1248AAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAA
ril4_PB1249BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril4_PB1250AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ril4_PB1252BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril4_PB1253AAAAAAAAAAAABBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ril4_PB1254BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBABBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ril4_PB1255AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril4_PB1257AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBAAAAAAAAAAAAAAAABBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ril4_PB1259BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAABBBBBBBBAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril4_PB1272BBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril4_PB1273AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ril4_PB1274BBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBAAAAAAAAAAABBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ril4_PB1276AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAA
ril4_PB1278BBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBAAAAAABBBBBBBBBBBAAAAAAAAAAAA
ril4_PB1280BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBB
ril4_PB1281AAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ril4_PB1284AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ril4_PB1285BBBBBBBBBBBBBBBAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
This is a portion of the data; to view all the data, please download the file.
Dataset 3.RIL genotypes (from Ross et al., 2011) and analysed trait values for the RILs.
In combination with the marker distances, these data were used for QTL mapping and the generation of the results shown in Figure 2 and Table 1.

Table 1. QTLs affecting the number of dauer larvae at food exhaustion.

Position is the 1 LOD interval for the QTL. R2 denotes the proportion of the inter-RIL variance explained by the QTL, and effect indicates how the QTL alters dauer larvae numbers, with a positive value indicating that the AF16 allele increases the number of dauer larvae compared to the HK104 allele.

ChromosomeQTLPosition (Mbp)R2EffectSupport
II113.7–14.58.3-AF16-scaled
IV214.9–17.512.6-AF16-scaled
15.1–16.412.6-HK104-scaled
15.1–15.614.4-block 2
14.9–16.437.5-block 3
V32.5–5.68.0+AF16-scaled
3.0–5.68.4+HK104-scaled
2.8–14.320.0+block 2
V416.1–16.817.4-block 3
X53.0–6.28.8+AF16-scaled
0–11.615.5+HK104-scaled
0–7.617.2+block 1
4.7–6.226.3+block 3

Comparing the AF16 and HK104 controls between the experimental blocks indicates that the number of dauer larvae at food exhaustion varies extensively between blocks (H = 11.06, p = 0.004 and H = 8.21, p = 0.007, for AF16 and HK104, respectively: Figure 1A). This variation is much greater than that seen for population size at food exhaustion (Figure 1B). Such variability between experimental blocks has been observed before with this assay, and is likely to be due to variation in either the actual or perceived food quality between batches of bacteria6.

Given the variation in dauer larvae formation between the experimental blocks we considered it unlikely that analysis of raw data would identify any QTLs, and this is what was observed (Figure 2A). Two approaches were therefore taken to determine if we could control for this variation. Firstly, we scaled the number of dauer larvae observed for each RIL either to the AF16 or HL104 controls within that experimental block (Figure 2A), e.g. the AF16 scaled value for a RIL was determined as (RIL mean - AF16 mean)/AF16 mean and this was used for mapping. Secondly, we analyzed each of the experimental blocks independently (Figure 2B).

58e5e4a7-383f-47f1-a609-9b83130eac74_figure1.gif

Figure 1. Dauer larvae formation is variable across experimental blocks.

The A) number of dauer larvae, and B) population size, at food exhaustion in AF16 and HK104 controls in the three experimental blocks. Values from each plate are shown, with red bars indicating the median values.

58e5e4a7-383f-47f1-a609-9b83130eac74_figure2.gif

Figure 2. Quantitative trait mapping identifies regions affecting the number of dauer larvae at food exhaustion.

A) CIM of the number of dauer larvae (solid line), and the number of dauer larvae scaled to the numbers in the AF16 (dashed line) or HK104 (dotted line) controls from that experimental block. B) CIM of the number of dauer larvae observed in each experimental block separately. Horizontal lines indicate thresholds.

In combination, these approaches identify three QTLs on chromosomes IV, V and the X, that affect the number of dauer larvae present at food exhaustion (co-localizing QTLs present in both Figure 2A and B) (Table 1). The analysis is also suggestive of additional QTLs on chromosomes II and V (Figure 2A and B; Table 1). A similar analysis of the population size at food exhaustion did not detect any QTLs.

Discussion

For a comparative analysis of dauer larvae development in growing populations, a panel of C. briggsae RILs were analyzed. These analyses indicate that the general properties of growing populations of C. briggsae are similar to those described for C. elegans5,6. This means these methodologies will be suitable for more direct comparisons between the species. The RIL analysis identifies a number of QTLs (Figure 2; Table 1) although these are not resolved to narrow genomic regions and therefore contain many hundreds of genes. They do however provide a starting point for attempts to identify causal loci.

Data availability

F1000Research: Dataset 1. The number of dauer larvae and the population size at food exhaustion for replicate populations of the RILs and the respective AF16 and HK104 controls from three experimental blocks, 10.5256/f1000research.7546.d10908812

F1000Research: Dataset 2. Marker distances (from Ross et al., 2011) for informative markers in the RILs analysed, 10.5256/f1000research.7546.d10908913

F1000Research: Dataset 3. RIL genotypes (from Ross et al., 2011) and analysed trait values for the RILs, 10.5256/f1000research.7546.d10909014

Comments on this article Comments (0)

Version 1
VERSION 1 PUBLISHED 15 Dec 2015
Comment
Author details Author details
Competing interests
Grant information
Copyright
Download
 
Export To
metrics
Views Downloads
F1000Research - -
PubMed Central
Data from PMC are received and updated monthly.
- -
Citations
CITE
how to cite this article
Green J and Harvey S. Quantitative trait loci mapping of dauer larvae development in growing populations of Caenorhabditis briggsae [version 1; peer review: 3 approved with reservations]. F1000Research 2015, 4:1447 (https://doi.org/10.12688/f1000research.7546.1)
NOTE: If applicable, it is important to ensure the information in square brackets after the title is included in all citations of this article.
track
receive updates on this article
Track an article to receive email alerts on any updates to this article.

Open Peer Review

Current Reviewer Status: ?
Key to Reviewer Statuses VIEW
ApprovedThe paper is scientifically sound in its current form and only minor, if any, improvements are suggested
Approved with reservations A number of small changes, sometimes more significant revisions are required to address specific details and improve the papers academic merit.
Not approvedFundamental flaws in the paper seriously undermine the findings and conclusions
Version 1
VERSION 1
PUBLISHED 15 Dec 2015
Views
13
Cite
Reviewer Report 01 Feb 2016
Christian Braendle, Institute of Biology Valrose, CNRS UMR7277, University of Nice Sophia Antipolis, Nice, France 
Approved with Reservations
VIEWS 13
This research note presents a very brief summary of a QTL analysis based on a phenotyping assay of dauer formation (at food exhaustion) in C. briggsae AI-RILs.
 
The main issue here is the low reproducibility of the phenotyping assay across replicates ... Continue reading
CITE
CITE
HOW TO CITE THIS REPORT
Braendle C. Reviewer Report For: Quantitative trait loci mapping of dauer larvae development in growing populations of Caenorhabditis briggsae [version 1; peer review: 3 approved with reservations]. F1000Research 2015, 4:1447 (https://doi.org/10.5256/f1000research.8126.r11575)
NOTE: it is important to ensure the information in square brackets after the title is included in all citations of this article.
Views
16
Cite
Reviewer Report 20 Jan 2016
Eric Haag, Department of Biology, University of Maryland, College Park, MD, USA 
Approved with Reservations
VIEWS 16
In this report, Green and Harvey address the genetic architecture governing variation in one of the best-studied examples of developmental plasticity in animas, the dauer larva Caneorhabditis nematodes.

Dauer larvae are dispersive forms of nearly all terrestrial nematodes, and are typically ... Continue reading
CITE
CITE
HOW TO CITE THIS REPORT
Haag E. Reviewer Report For: Quantitative trait loci mapping of dauer larvae development in growing populations of Caenorhabditis briggsae [version 1; peer review: 3 approved with reservations]. F1000Research 2015, 4:1447 (https://doi.org/10.5256/f1000research.8126.r11992)
NOTE: it is important to ensure the information in square brackets after the title is included in all citations of this article.
Views
15
Cite
Reviewer Report 18 Jan 2016
Erik C. Andersen, Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA 
Approved with Reservations
VIEWS 15
Using techniques published previously, the authors measure the number of dauer larvae present at food patch exhaustion for a collection of Caenorhabditis briggsae recombinant lines. The dauer phenotype results are very noisy (as observed previously), but after data transformation quantitative trait ... Continue reading
CITE
CITE
HOW TO CITE THIS REPORT
Andersen EC. Reviewer Report For: Quantitative trait loci mapping of dauer larvae development in growing populations of Caenorhabditis briggsae [version 1; peer review: 3 approved with reservations]. F1000Research 2015, 4:1447 (https://doi.org/10.5256/f1000research.8126.r11792)
NOTE: it is important to ensure the information in square brackets after the title is included in all citations of this article.

Comments on this article Comments (0)

Version 1
VERSION 1 PUBLISHED 15 Dec 2015
Comment
Alongside their report, reviewers assign a status to the article:
Approved - the paper is scientifically sound in its current form and only minor, if any, improvements are suggested
Approved with reservations - A number of small changes, sometimes more significant revisions are required to address specific details and improve the papers academic merit.
Not approved - fundamental flaws in the paper seriously undermine the findings and conclusions
Sign In
If you've forgotten your password, please enter your email address below and we'll send you instructions on how to reset your password.

The email address should be the one you originally registered with F1000.

Email address not valid, please try again

You registered with F1000 via Google, so we cannot reset your password.

To sign in, please click here.

If you still need help with your Google account password, please click here.

You registered with F1000 via Facebook, so we cannot reset your password.

To sign in, please click here.

If you still need help with your Facebook account password, please click here.

Code not correct, please try again
Email us for further assistance.
Server error, please try again.