ALL Metrics
-
Views
-
Downloads
Get PDF
Get XML
Cite
Export
Track
Research Article

Environmental volunteer well-being: Managers’ perception and actual well-being of volunteers

[version 1; peer review: 2 approved]
PUBLISHED 16 Nov 2016
Author details Author details
OPEN PEER REVIEW
REVIEWER STATUS

Abstract

Background: Environmental volunteering can increase well-being, but environmental volunteer well-being has rarely been compared to participant well-being associated with other types of volunteering or nature-based activities. This paper aims to use a multidimensional approach to well-being to explore the immediately experienced and later remembered well-being of environmental volunteers and to compare this to the increased well-being of participants in other types of nature-based activities and volunteering. Furthermore, it aims to compare volunteer managers’ perceptions of their volunteers’ well-being with the self-reported well-being of the volunteers. Methods: Onsite surveys were conducted of practical conservation and biodiversity monitoring volunteers, as well as their control groups (walkers and fieldwork students, respectively), to measure general well-being before their nature-based activity and activity-related well-being immediately after their activity. Online surveys of current, former and potential volunteers and volunteer managers measured remembered volunteering-related well-being and managers’ perceptions of their volunteers’ well-being. Data were analysed based on Seligman’s multidimensional PERMA (‘positive emotion’, ‘engagement’, ‘positive relationship’, ‘meaning’, ‘achievement’) model of well-being. Factor analysis recovered three of the five PERMA elements, ‘engagement’, ‘relationship’ and ‘meaning’, as well as ‘negative emotion’ and ‘health’ as factors. Results: Environmental volunteering significantly improved positive elements and significantly decreased negative elements of participants’ immediate well-being, and it did so more than walking or student fieldwork. Even remembering their volunteering up to six months later, volunteers rated their volunteering-related well-being higher than volunteers rated their well-being generally in life. However, volunteering was not found to have an effect on overall mean well-being generally in life. Volunteer managers did not perceive the significant increase in well-being that volunteers reported. Conclusions: This study showed how environmental volunteering immediately improved participants’ well-being, even more than other nature-based activities. It highlights the benefit of regarding well-being as a multidimensional construct to more systematically understand, support and enhance volunteer well-being.

Keywords

citizen science, environmental volunteering, nature-based activities, PERMA, positive psychology, practical conservation, volunteering, well-being

Introduction

Natural environments have always been important for human well-being (Frumkin, 2001; Kellert & Wilson, 1993), and continue to be so as local environments become more urbanised (Kaplan, 1983). One way to harness the well-being benefits of natural environments is to participate in environmental volunteering, which can increase people’s connection to nature and their sense of well-being (Gooch, 2005; O’Brien et al., 2010; Pillemer et al., 2010). Most research on volunteer well-being has focused on comparisons between volunteers and non-volunteers, elucidating differences in specific elements of well-being, such as happiness, life satisfaction, depression and survival (Jenkinson et al., 2013; Konrath et al., 2012; Thoits & Hewitt, 2001). Very few studies have addressed the questions of how volunteering immediately affects participants’ well-being and how participants in different types of volunteering may gain benefits in different elements of well-being. In addition, no studies have examined how volunteer managers perceive the well-being of their volunteers and how this relates to actual volunteer well-being. This paper addresses these challenges by using a multidimensional well-being model to first explore the well-being of environmental volunteers and compare it to the well-being of participants in other similar types of nature-based activities and other types of volunteering. It then explores volunteer managers’ perception of the well-being of their volunteers, and finally it compares this perceived well-being to the volunteers’ self-reported well-being.

Volunteer well-being

Many studies have shown that volunteering is closely linked to increased well-being of volunteers (Binder & Freytag, 2013; Borgonovi, 2008; Greenfield & Marks, 2004; Jenkinson et al., 2013; Koss & Kingsley, 2010; O’Brien et al., 2010; Son & Wilson, 2012; Stukas et al., 2016; Thoits & Hewitt, 2001; Townsend, 2006; Van Willigen, 2000; Wheeler et al., 1998; Wilson, 2000). However, studies have used different definitions of well-being, and have therefore measured different constructs, which have often included only some aspects of well-being instead of taking a holistic approach. Two main approaches to conceptualising well-being prevail: hedonism and eudaimonia. Hedonism is the idea that maximisation of pleasure is the goal and the way to happiness for all humans, whereas eudaimonia proposes that striving to lead a meaningful life and achieve optimum functioning is the way to happiness (Aristotle, 2009; Diener, 2000; Ryan & Deci, 2001; Ryff, 1989). The two approaches have informed research into human well-being with different methods proposed for the study of well-being. Methods based on the study of ‘subjective well-being’ includes measures of positive affect, negative affect and life satisfaction, a mixture of both hedonic and eudaimonic well-being (Bradburn, 1969; Diener, 1984; Diener, 1994; Diener et al., 1999). The study of ‘psychological well-being’ on the other hand measures only eudaimonic elements of life, such as self-acceptance, positive relations with others, autonomy, environmental mastery, purpose in life and personal growth, leaving out the hedonic focus on pleasures (Ryff, 1989; Ryff, 1995; Ryff, 2014).

Though some aspects of volunteer well-being have been studied in depth, no previous studies have investigated volunteer managers’ perceptions of the well-being of their volunteers. As volunteer managers are responsible for the well-being of their volunteers, and as improved volunteer well-being is often an important outcome for volunteers, organisations and society (O’Brien et al., 2011), it is vital that managers’ perceptions of the well-being of their volunteers correspond to actual volunteer well-being. The cumulative evidence from a broad range of studies (see meta-analyses and reviews in Jenkinson et al., 2013; Musick & Wilson, 2008; Wilson, 2000; Wheeler et al., 1998) is that volunteering has a positive relationship with a wide range of elements within the concept of well-being, though causation can be difficult to determine (Greenfield & Marks, 2004). Previous studies have investigated the effect of volunteering on subjective well-being (e.g. Binder & Freytag, 2013; Harlow & Cantor, 1996; Windsor et al., 2008) or psychological well-being (e.g. Ho, 2015), or a combination of one of these along with other elements of well-being, such as social well-being, trust, self-esteem, depression or physical health (e.g. Greenfield & Marks, 2004; Koss & Kingsley, 2010; O’Brien et al., 2010; Son & Wilson, 2012; Stukas et al., 2016; Thoits & Hewitt, 2001; Townsend, 2006). Some studies show that volunteering leads to increased well-being (Borgonovi, 2008; Piliavin, 2009; Piliavin & Siegl, 2007), while other studies show that people higher in well-being are also more likely to volunteer (Gimenez-Nadal & Molina, 2015; Greenfield & Marks, 2004) and to volunteer more hours (Son & Wilson, 2012; Thoits & Hewitt, 2001). Most likely the causality runs both ways between volunteering and well-being (Binder & Freytag, 2013; Gimenez-Nadal & Molina, 2015) in a ‘virtuous cycle’ where happy and healthy people volunteer more and volunteers are happier and healthier (Brooks, 2007). Environmental volunteering could further enhance this virtuous cycle, as spending time in nature has been linked to increased well-being (Frumkin, 2001).

Environmental volunteer well-being

Only a few studies have focused specifically on the relationship between environmental volunteers and their well-being (e.g. Koss & Kingsley, 2010; O’Brien et al., 2010; Townsend, 2006), as many studies have used cohort datasets where volunteering type was often heterogeneous or not described (Jenkinson et al., 2013). Volunteering in nature has been linked to well-being benefits for volunteers, including improved social networks (Bell et al., 2008; Gooch, 2005; Koss & Kingsley, 2010; Muirhead, 2011; O’Brien et al., 2010), increased personal satisfaction and feelings of enjoyment (Koss & Kingsley, 2010; Muirhead, 2011), and improved health and well-being (Koss & Kingsley, 2010; O’Brien et al., 2010; Pillemer et al., 2010). Environmental volunteering can have a positive effect, not only by increasing positive indices of well-being, but also by reducing negative indices such as reducing stress (Guiney & Oberhauser, 2009; O’Brien et al., 2010) and depression (Pillemer et al., 2010). Furthermore, environmental volunteering offers the added benefit of providing opportunities for volunteers to spend time in nature, which can lead to a better connection or re-connection with nature for the volunteers (Bell et al., 2008; Guiney & Oberhauser, 2009). It can also lead to volunteers gaining an increased understanding of the natural environment (Koss & Kingsley, 2010) and thereby also an enhanced sense of place (Evans et al., 2005; Gooch, 2005). A closer connection to nature has been shown to enhance people’s well-being (Bowler et al., 2010; Kellert & Wilson, 1993), and therefore it could be expected that environmental volunteers would benefit more from their volunteering than other types of volunteers. Practical conservation volunteering requires stamina and physical strength and it provides a way to exercise and gain improved fitness (Guiney & Oberhauser, 2009; O’Brien et al., 2010), which can also reinforce positive well-being (Pretty et al., 2005).

To better understand these relationships between volunteering and well-being, a more holistic and multidimensional approach to well-being, including both hedonic and eudaimonic elements, as well as social elements, would be well suited (Piliavin, 2009). Such a holistic approach to well-being is gaining acceptance (Forgeard et al., 2011; Keyes, 2002; Ryan & Deci, 2001), and one proposed multidimensional model of well-being is Seligman’s (2011) PERMA model. It is a construct with five contributing elements (PERMA): 1) ‘Positive emotion’, which encompass present positive feelings, life satisfaction and positive emotions about the future; 2) ‘engagement’, which is employing one’s strengths to a task, becoming fully absorbed in the task and therefore completely losing track of time, also referred to as getting into ‘flow’ (Csikszentmihalyi, 1975; Csikszentmihalyi, 1991; Seligman, 2011); 3) ‘positive relationships’, which are fundamental to a good life according to Seligman (2011), and Baumeister & Leary (1995) have also defined it as a basic human need that is essential for well-being; 4) ‘meaning’, which includes feelings of doing something worthwhile and having a purpose and direction in life, something which is crucial to well-being as, according to Seligman (2011), most people have a need to belong to or serve something they believe is larger than themselves, e.g. their family, an organisation or a religious group; and 5) ‘achievement’, often pursued for its own sake by individuals setting their own personal goals or striving to achieve recognition in the wider world, e.g. winning an award or accumulating wealth. Seligman (2011) did not propose a measure for his PERMA model but Butler & Kern (2016) subsequently developed the PERMA-Profiler (PERMA-P), a scale based on the PERMA model, which also includes additional elements of well-being. The additional elements in the PERMA-P are 1) ‘negative emotion’ from the concept of subjective well-being acknowledging the importance of both positive and negative aspects of well-being; 2) ‘health’, which can be considered a core part of well-being; 3) ‘loneliness’, which is a strong predictor of many negative life outcomes; and 4) ‘overall happiness’, which allows an overall assessment after reflecting on specific elements of well-being (Butler & Kern, 2016).

Aims and research questions

This paper aims to use a multidimensional approach to well-being to explore the immediately experienced and later remembered well-being of environmental volunteers, as well as their general well-being and to compare this to the well-being of participants in other types of nature-based activities and volunteering. It also aims to compare volunteer managers’ perception of their volunteers’ well-being with the self-reported well-being of the volunteers. These aims were addressed through the following research questions: 1) How does environmental volunteering immediately affect participants’ sense of well-being, and how does that compare to the immediate effect of other types of nature-based activities on participants’ sense of well-being? 2) How well do volunteers sustain the memory of this immediately experienced sense of well-being after they have gone home? 3) How do volunteer managers perceive the effect of volunteering on the well-being of their volunteers? 4) How does the volunteer managers’ perception of volunteer well-being compare to volunteers’ actual sense of volunteering-related well-being?

Methods

Well-being was investigated using a positive psychology approach based on the PERMA well-being theory proposed by Seligman (2011) and using the PERMA-Profiler (PERMA-P) developed by Butler & Kern (2016). The PERMA-P consists of the original five well-being elements proposed by Seligman, ‘positive emotion’ (P), ‘engagement’ (E), ‘positive relationships’ (R), ‘meaning’ (M) and ‘achievement’ (A), as well as ‘negative emotion’ and ‘health’, measured with three items each, and ‘loneliness’ and ‘happiness’, measured with a single item each. Three-item elements can be regarded as individual factors or elements, and the resulting PERMA-P seven-factor model of well-being can be tested through factor analysis with the ‘overall happiness’ and ‘loneliness’ items providing additional information (Butler & Kern, 2016). All items were scored on an 11-point (0–10) Likert scale (Likert, 1932). Following a pilot study (unpublished report, GK, RS, SC and AD), the wording of two items on the questionnaire was changed. The two words, ‘loved’ and ‘angry’, were seen by volunteers to be ‘quite American’ and badly fitted to a British volunteering context, and were therefore changed to ‘appreciated’ and ‘frustrated’, respectively. Data presented here are the complete subset of all items related to well-being in the questionnaires from a larger study, which also investigated volunteer motivation and activities (GK PhD research). Data were obtained from three sources: Study 1) an onsite survey of participants in nature-based activities (Dataset 1); Study 2) an online survey of former, current and potential volunteers (Dataset 2); and Study 3) an online survey of former and current volunteer managers (Dataset 3; Table 1).

Table 1. Overview of the three studies, respondents and type of well-being measured.

Overview of the three studies in this research, including focus, respondents, subgroups and type of well-being measured. BM, biodiversity monitoring volunteers; Stud, Students conducting fieldwork as part of their university course; PC, practical conservation volunteers; Walk, walkers; BMPC, biodiversity monitoring volunteers also doing practical conservation.

Study 1: Onsite activity survey
RespondentsActivity participants (volunteers, students and walkers)
FocusBefore-activityAfter-activity
Type of well-being
measured
Own general well-beingOwn experienced activity-related well-being
Respondent sub-
groups
BMStudPCWalkBMStudPCWalk
Study 2: Online volunteer survey
RespondentsVolunteers
FocusCurrentFormer and potential
Type of well-being
measured
Own remembered activity-
related well-being
Own general well-being
Respondent sub-
groups
BMBMPCPCOtherBMBMPCPCOther
Study 3: Online volunteer manager survey
RespondentsVolunteer managers
FocusFormer and current
Type of well-being
measured
Perceived volunteer well-being
Respondent sub-
groups
BMBMPCPCOther

The aim of Study 1 was to answer research question 1) How does environmental volunteering immediately affect participants’ sense of well-being and how does that compare to the immediate effect of other types of nature-based activities on participants’ sense of well-being? Combining data from Study 1 and Study 2 aimed to answer research question 2) How well do volunteers sustain the memory of this immediately experienced sense of well-being after they have gone home? The aim of Study 3 was to answer research question 3) How do volunteer managers perceive the effect of volunteering on the well-being of their volunteers? And finally, combining data from all three studies aimed to answer research question 4) How does this volunteer manager perception of volunteer well-being compare to volunteers’ actual sense of volunteering-related well-being?

Participants

Ethics. This research project was approved through the ethics approval process at Bournemouth University (ref ID 2419). All participants provided written informed consent for participation.

Study 1. The onsite study was conducted between October 2014 and November 2015 and involved participants from 13 organisations from Southern England, divided into four types of activities: Biodiversity monitoring, practical conservation volunteering, walking, and students conducting fieldwork as part of their university course (Table 2). Environmental organisations were invited to participate in the study based on them conducting volunteer activities in groups. Control groups were invited based on their group activity being conducted in the same natural environments as the volunteer activities of the environmental organisations. To determine if environmental volunteering had a different effect on well-being compared to other non-altruistic activities performed outdoors, students and walkers were surveyed in addition to environmental volunteers. Students were chosen as the control group to the biodiversity monitoring volunteers, as both groups were conducting ecological fieldwork in similar areas, but whereas volunteering is often seen as altruistic (Smith, 1981; Unger, 1991), students did the fieldwork because it was a requirement of their university courses. Walking groups were chosen as the control group for the practical conservation volunteers as both activities were performed outdoors in similar areas and were somewhat physically demanding, but the purpose of the activities were again different, with volunteering being partly altruistic and walking only benefitting the walkers themselves. Also, walking is the most popular activity in the natural environment in England (Natural England, 2015) and walking programmes are promoted as health interventions to decrease negative affect and mental illness and increase well-being in participants (Iwata et al., 2016; Marselle et al., 2014). The survey was designed as a paired before-activity and after-activity survey to measure general level of well-being and experienced level of well-being during an activity, respectively. Activity participants only completed questionnaires once to ensure independent samples even if they participated in activities later where other activity participants completed questionnaires.

Table 2. Respondents and descriptive statistics of groups in the onsite survey (Study 1).

Activity typengeneral well-beingnactivity well-beingNumber of
organisations
Number of
sample dates
Group sizes
(mean ±SD)
Hours of activity
(mean ±SD)
Biodiversity
monitoring
917981612.83 (±6.16)3.71 (±1.62)
Students1231093639.20 (±21.72)3.95 (±1.20)
Practical
conservation
10010121515.62 (±9.52)4.57 (±1.06)
Walkers736221023.70 (±4.28)2.77 (±0.79)

Studies 2 and 3. Both online surveys were open to anyone with the link between September and December 2015. Environmental organisations involved in study 1 as well as other worldwide environmental organisations and volunteer centres in the UK were contacted directly and asked to invite their volunteers and volunteer managers to participate and the surveys were also sent out more widely through professional networks. Study 2 investigated the general level of well-being of former and potential volunteers as well as the remembered level of well-being during volunteering of current volunteers. In Study 2, a total of 417 responses were received with completed questions about well-being. This sample comprised 53% females and 47% males. Age ranged from 18 to 94 years old (mean=54.86, SD=16.10). Most respondents had at least one university degree (65.23%) and many were retired (48.68%), some were in full-time (21.10%) or part-time (13.19%) employment and few were students (6.95%), not currently employed (5.28%) or homemakers (1.20%). Respondents were from 11 different countries, with the majority residing in the United Kingdom (88.49%). They named 118 different organisations they previously or currently volunteer for or would like to volunteer for in the future. Respondents included people from three different periods: former volunteers (18%), current volunteers (70%) and potential future volunteers (12%). They were grouped into four types of volunteers: biodiversity monitoring volunteers (BM; 21%), practical conservation volunteers (PC; 34%), biodiversity monitoring volunteers also performing practical conservation work (BMPC; 25%), and all other types of volunteers (19%) (Table 3).

Table 3. Type of volunteers and volunteer status of respondents to the online volunteer survey (Study 2).

BMPC, biodiversity monitoring volunteers also performing practical conservation work (n=417).

Volunteer typeFormer
volunteers (%)
Current
volunteers (%)
Potential
volunteers (%)
Total (%)
Biodiversity
monitoring
4.0815.351.2020.62
BMPC3.8417.274.3225.42
Practical conservation
volunteers
6.0024.942.8833.81
Other types of
volunteers
4.0812.472.4018.94
Undisclosed1.201.20
Total17.9970.0211.99100.00

Study 3 investigated the perceived level of well-being of volunteers by former and current volunteer managers. A total of 96 responses were received with completed questions about well-being. This sample comprised 61% females and 39% males. Age ranged from 19 to 74 years old (mean=43.01, SD=13.03). Most respondents had at least one university degree (80%) and most respondents were in full-time (69%) or part-time (13%) employment, few were retired (10%), students (2%), not currently employed (1%) or homemakers (1%). Respondents were from 10 different countries, with the majority residing in the United Kingdom (80%). Respondents included people from two different periods: former volunteer managers (14%) and current volunteer managers (86%), and they identified 62 different organisations they previously or currently manage volunteers for. They were grouped into four types of volunteering similarly to the volunteers in Study 2: BM (20%), PC (26%), BMPC (35%) and all other types of volunteering (19%) (Table 4).

Table 4. Type of volunteering and volunteer manager status of respondents (Study 3).

BMPC, volunteer managers in biodiversity monitoring also performing practical conservation work (n=96).

Types of
volunteering
Former
managers (%)
Current
managers (%)
Total (%)
Practical
conservation
2.0823.9626.04
BMPC9.3826.0435.42
Biodiversity
monitoring
19.7919.79
Other types of
volunteering
2.0816.6718.75
Total13.5486.46100.00

Data analyses

Deriving the well-being factors. The first step in exploring well-being was to test if the structures of self-reported well-being and managers’ perception of volunteer well-being were consistent with the proposed seven-factor PERMA-Profiler (PERMA-P) model (Butler & Kern, 2016). This was done by performing exploratory factor analysis (EFA) on a subsample of self-reported well-being data to generate a best fit model. The generated model and the original seven-factor PERMA-P model were subsequently tested for best fit through confirmatory factor analysis (CFA) using the other subsample of collected data from participants, and the total combined sample. EFA was also performed on the volunteer manager data sample to generate a best fit model and confirmatory factor analysis was run on the generated model, the model generated from the self-reported subsample and the original seven-factor PERMA-P model to determine the best fit model.

Self-reported well-being: Only complete responses were used for factor analysis (n=1157) (Figure 1). The data were split in two subsamples to develop (n=645) and test (n=512) the factor model. The development sample consisted of all onsite and online respondents to questionnaires measuring activity-related well-being, which included volunteers and control activity participants from Study 1 (‘after-activity survey’) and current volunteers from Study 2. The test sample consisted of all onsite and online respondents to questionnaires measuring general well-being which included volunteers and control activity participants from Study 1 (‘before-activity survey’) and former and potential volunteers from Study 2. The largest subsample was used as the development sample for the EFA.

78972e2d-f911-486a-92bc-821a1656e881_figure1.gif

Figure 1. Analysis flowchart for determining the best fit model for self-reported well-being factors.

The first step in determining the best fitting model was to test the factorability of the items in the development subsample with the Kaiser-Meyer-Olkin measure of sampling adequacy, recommended to be >0.60, and with Bartlett’s test of sphericity, where significance indicates the data are suitable for factor analysis (Dziuban & Shirkey, 1974). The first step in EFA is to determine the number of factors to extract. There is no set formula for determining this number and it is determined by using a variety of methods and interpretation of the data (Matsunaga, 2010). Several methods were used to determine the number of factors to extract, including parallel analysis (Horn, 1965), the Kaiser-Guttman criterion (counting only Eigenvalues above one, Kaiser, 1960), Velicer’s minimum average partial (MAP) test (Velicer, 1976) and visual inspection of the scree plot (Cattell, 1966). EFA using ordinary least squares to find the minimum residual (minres) solution with oblique (promax) rotation, which allows factors to be correlated, were performed for relevant models. To determine overall best fit model, results were evaluated using the root mean square error of approximation (RMSEA). RMSEA <0.05 indicate a good fit and between 0.05 and 0.08 indicate a fair fit (MacCallum et al., 1996). Cronbach’s α (Cronbach, 1951) was calculated for each factor to test internal reliability of factors. Cronbach’s α values >0.70 are considered acceptable (Nunnally, 1978), though for scales with 6 or fewer items lower α values may be acceptable (Cortina, 1993). Items with factor loadings <0.04 or loading on two factors with the difference between primary and secondary loadings <0.03 were removed from the dataset before further analyses, a suggested way of dealing with inconclusive factor loadings (Matsunaga, 2010). The best factor model was determined by choosing the model with optimal model fit indices, high internal reliability of factors and best interpretability of the data. CFA is a method to test if a certain predetermined model is a good fit for a data sample. CFA was performed for the best fit model developed from the EFA, the original seven-factor PERMA-P model and a generic one-dimensional control model using the test sample and the combined development and test sample. Model fits were evaluated using RMSEA, the standardised root mean residual (SRMR), comparative fit index (CFI) and the Tucker Lewis Index (TLI), and models were compared for best fit using χ2 difference tests. SRMR below 0.08 is considered a good fit, and TLI and CFI values >0.90 are considered acceptable and close to or above 0.95 are considered good fits (Hu & Bentler, 1999).

Volunteer managers’ perception of volunteers’ well-being: Only complete responses from former and current volunteer managers were used for factor analysis (n=96) (Figure 2). Due to the limited sample size, it was not possible to split the data into a development and a test sample, as sample size should be at least 100–200 per subsample to perform the analysis (MacCallum et al., 1996). EFA was performed on the complete sample, following the method described above, including testing factorability of items, determining number of factors to extract and using oblique (promax) rotation for the EFA. The best fit model was determined also following the described method above by evaluating RMSEA, interpretability and Cronbach’s α. Items with inconclusive factor loadings were removed. CFA was then performed on the volunteer manager data sample using the best-fitting model from the EFA, the model developed from the self-reported well-being sample EFA described above, the original seven-factor PERMA-P model and a one-dimensional control model. Model fit for all models were evaluated using RMSEA, SRMR, CFI and TLI, and models were compared for best fit using χ2 difference tests.

78972e2d-f911-486a-92bc-821a1656e881_figure2.gif

Figure 2. Analysis flowchart for determining best fit model of perceived volunteer well-being factors by volunteer managers.

Influence of volunteering type and other variables on well-being scores. As data were non-normally distributed, non-parametric tests were used in all analyses. As samples in the onsite survey (Study 1) had subject replication, Wilcoxon signed-rank tests were used to test for differences in the level of general well-being and level of activity-related well-being within the four groups of activity participants. For all other comparisons without subject replication, Wilcoxon rank sum tests were used to test for differences in levels between general and activity-related well-being. Kruskal-Wallis tests with post hoc Dunn’s test with Bonferroni correction were used to identify significantly different levels of actual and perceived well-being between the four different types of volunteers (Studies 2 and 3) and between managers in the four different types of volunteering (Study 3), respectively.

Stepwise multiple regression was performed to examine if there were any effects of external variables on overall mean well-being, calculated as the mean of all well-being items (23 items) with negative items, i.e. negative emotions and loneliness, reverse scored. Variables included in Study 1 were volunteer frequency, tenure and hours per month volunteered, and specific variables on the day: weather, group size, hours volunteered, volunteer manager experience and type of volunteering. In Study 2, variables included were volunteering type, as well as demographic variables (age, gender, education, country). Variables included in Study 3 were volunteering type, period and manager tenure, as well as demographic variables (age, gender, education, country).

Statistical analysis. All statistical analyses were completed using RStudio v3.2.3 (RStudio Team, 2015). The nFactor package v.2.3.3 (Raiche, 2010), psych package v.1.5.8 (Revelle, 2016) and the GPArotation package v.2014.11-1 (Bernaards & Jennrich, 2005) were used for exploratory factor analysis, the lavaan package v.0.5-20 for R was used for confirmatory factor analysis (Rosseel, 2012) and the ggplot2 package v.2.0.0 was used to create graphs (Wickham, 2009).

Results

Studies 1 and 2: Immediate and remembered effects of environmental volunteering, other nature-based activities and other types of volunteering

Deriving the self-reported well-being factors. Factorability of the items in the development sample was supported by a Kaiser-Meyer-Olkin measure of 0.94 and a significant Bartlett’s test of sphericity (χ2(210)=8448.17; p<0.001), indicating the data were fit for factor analysis. The number of factors to extract was determined by evaluating several factor extraction results: parallel analysis suggested six factors, the Kaiser-Guttman criteria suggested four factors, Velicer’s minimum average partial test identified three factors and visual inspection of the scree plot suggested between two and five factors. Three-, four-, five- and six-factor models were evaluated through exploratory factor analysis and Cronbach’s α for individual factors for each model were also evaluated. The five-factor model provided the clearest structure with a good fit (RMSEA = 0.056 [90% confidence interval = 0.048, 0.062]). Five of the seven factors could be interpreted as factors from the PERMA-P (Table 5): ‘Engagement’ (four items, α = 0.79), ‘relationships’ (three items, α = 0.77), ‘meaning’ (two items, α = 0.88), ‘negative emotions’ (three items, α = 0.64) and ‘health’ (three items, α = 0.92). One ‘positive emotion’ item, ‘In general, how often do you feel joyful?’, loaded on the ‘engagement’ factor. One ‘achievement’ item, ‘How often do you achieve the important goals you have set for yourself?’ loaded on the ‘meaning’ factor, but was dropped to substantially improve internal reliability of factor and overall model fit. Five items failed to load conclusively on any one factor and were left out of the subsequent confirmatory factor analysis.

Table 5. Five well-being factors resulting from exploratory factor analysis of the development sample.

The five well-being factors resulting from exploratory factor analysis of the development sample. Cronbach's α for each factor and items with factor loadings (only loadings <-0.30 or >0.30). Greyed out items were excluded from the final model due to inconclusive factor loadings, and were not included in the confirmatory factor analysis. One item was dropped to improve internal reliability of factor (n=645).

EngagementRelationshipMeaningNegativeHealth
Cronbach's α0.790.770.880.640.92
ItemOriginal PERMA-P
factor
How often do you become absorbed in
what you are doing?
Engagement0.84
In general, how often do you feel joyful?Positive emotion0.84
In general, to what extent do you feel
excited and interested in things?
Engagement0.65
How often do you lose track of time while
doing something you enjoy?
Engagement0.54
In general, how often do you feel
positive?
Positive emotion0.46
How much of the time do you feel you are
making progress towards accomplishing
your goals?
Achievement0.420.36
To what extent do you feel appreciated?Relationship1.06
How satisfied are you with your personal
relationships?
Relationship0.86
To what extent do you receive help and
support from others when you need it?
Relationship0.53
In general, to what extent do you feel
contented?
Positive emotion0.47
To what extent do you generally feel you
have a sense of direction in your life?
Meaning0.400.38
In general, to what extent do you lead a
purposeful and meaningful life?
Meaning0.99
In general, to what extent do you feel that
what you do in your life is valuable and
worthwhile?
Meaning0.69
How often do you achieve the important
goals you have set for yourself?1
Achievement0.56
How often do you feel frustrated?Negative emotion0.66
How often do you feel sad?Negative emotion0.63
How often do you feel anxious?Negative emotion0.64
How satisfied are you with your current
physical health?
Health0.99
In general, how would you say your
health is?
Health0.88
Compared to others of your same age
and sex, how is your health?
Health0.89
How often are you able to handle your
responsibilities?
Achievement

CFA was run on the test sample and the combined development and test sample with the five-factor model developed from the EFA. Model fit was acceptable for the test sample based on all fit indices (RMSEA (0.076 [0.067; 0.085]), SRMR (0.066), CFI (0.938) and TLI (0.918)). Model fit was good for the combined development and test sample based on SRMR (0.055), CFI (0.955) and TLI (0.940) indices and was acceptable based on RMSEA (0.069 [0.064; 0.075]). The five-factor model from the EFA fitted the test sample significantly better than the original seven-factor PERMA-P model (Δχ2(88) = 530; p<0.001) or a generic one-factor model (Δχ2(109) = 1565; p<0.001). The five-factor model also fitted the combined development and test sample significantly better than the original seven-factor PERMA-P model (Δχ2(88) = 788; p<0.001) or a generic one-factor model (Δχ2(109) = 3717; p<0.001). Factor correlations based on the combined test and development sample are summarised in Table 6, and show that all factors were significantly correlated.

Table 6. Final well-being factors, descriptive statistics and correlations for the combined development and test participant sample.

Final well-being factors, descriptive statistics and correlations for the combined development and test participant sample showing significant correlations between all factors (n=1157; **p<0.001).

VariableMeanSDEngagementRelationshipMeaningNegative
Engagement7.341.531.00
Relationship7.551.740.52**1.00
Meaning7.731.740.66**0.63**1.00
Negative2.772.22-0.20**-0.45**-0.39**1.00
Health7.471.750.40**0.44**0.50**-0.35**

External factors and volunteer well-being. Volunteers spending more hours volunteering per month, and for Study 2 also spending more time volunteering outdoors, reported higher levels of overall well-being. For volunteers in Study 1, this result came from stepwise multiple regression, which reduced the model for predicting the overall mean volunteering-related well-being score to only include the number of hours spent volunteering per month as a significant factor (F1,164 = 5.55; p<0.05; R2 = 0.03). For the current volunteers in Study 2, stepwise multiple regression reduced the model for predicting the overall mean volunteering-related well-being score to include the number of hours spent volunteering per month (p<0.001) and the amount of time spent outdoors while volunteering (p<0.001) as significant factors (F2,225 = 11.69; p<0.001; R2adj = 0.09). The number of hours spent volunteering per month (r=0.22; p<0.001) and the amount of time spent outdoors while volunteering (r=0.21; p<0.01) were both significantly positively correlated with the overall mean volunteering-related well-being score.

Study 1: How does environmental volunteering immediately affect well-being? Mean scores were calculated for each well-being element for both general well-being and activity-related well-being in the four participating groups: Biodiversity monitoring volunteers, practical conservation volunteers, students and walkers (Table 7). All groups rated most of their activity-related well-being significantly better than their general well-being with the positive indices, ‘engagement’, ‘relationship’, ‘meaning’, ‘health’ and ‘happiness’, rated significantly higher and the negative indices, ‘negative emotions’ and ‘loneliness’, rated significantly lower for activity-related well-being than for general well-being (Wilcoxon signed-rank test; p<0.05 for all; Figure 3). The only exceptions were students’ rating of ‘meaning’, which was not significantly different between generally in life and during their fieldwork, and their rating of ‘engagement’, which was significantly lower for activity-related well-being than generally in life.

78972e2d-f911-486a-92bc-821a1656e881_figure3.gif

Figure 3. Differences between paired general well-being scores and activity well-being scores of participants in nature-based activities.

Differences between paired general well-being scores (light grey) and activity well-being scores (dark grey) for biodiversity monitoring volunteers, practical conservation volunteers, students and walkers (±SE bars). ‘Engagement’, ‘relationship’, ‘meaning’, ‘negative emotion’ and ‘health’ factor scores were means of factor item aggregates. ‘Loneliness’ and ‘happiness’ were single item measures (Wilcoxon signed-rank tests;*p< 0.05, **p<0.01, ***p<0.001).

Table 7. Means (SD) for well-being elements for all groups of participants and all types of well-being.

BM, biodiversity monitoring volunteers; PC, practical conservation volunteers; BMPC, biodiversity monitoring volunteers also doing practical conservation.

Study 1
(onsite, paired observations)
Study 2
(online, unpaired observations)
Study 3
(online, managers)
Well-being
element
GroupGeneral
well-being
Experienced
activity-related
well-being
General
well-being
Remembered
volunteer-related
well-being
Perceived
volunteer well-
being
Engagement
Students7.32 (1.12) 6.21 (1.98)
Walkers7.13 (1.29) 7.51 (1.47)
BM7.25 (1.45) 7.83 (1.32)7.33 (1.56)7.14 (1.74)7.50 (1.27)
PC7.34 (1.33) 7.69 (1.52) 7.61 (1.33)7.53 (1.46)7.73 (1.10)
BMPC7.21 (1.59)7.97 (1.15)7.64 (1.22)
Other7.46 (1.20)7.61 (1.49)7.07 (1.85)
Relationship
Students6.88 (1.59) 7.63 (1.50)
Walkers6.36 (1.80) 7.18 (1.87)
BM7.14 (1.58) 8.61 (1.31) 7.11 (2.17)7.40 (1.64)7.79 (1.34)
PC7.07 (1.75) 8.52 (1.30) 7.11 (2.19)8.02 (1.35)8.25 (0.83)
BMPC7.49 (1.64)8.25 (1.59)8.06 (1.35)
Other7.53 (1.78)8.34 (1.47)7.89 (1.77)
Meaning
Students6.87 (1.73)7.06 (2.02)
Walkers7.14 (1.62) 8.31 (1.44)
BM7.20 (1.48) 8.48 (1.27) 7.86 (1.37)8.07 (1.34)8.11 (1.08)
PC7.18 (1.76) 8.53 (1.58) 7.31 (1.96)8.18 (1.51)8.38 (1.04)
BMPC7.47 (1.86)8.55 (1.11)8.47 (1.25)
Other7.72 (1.75)8.72 (1.45)8.67 (1.04)
Health
Students6.77 (1.52) 7.31 (1.73)
Walkers7.55 (1.55) 8.06 (1.57)
BM7.19 (1.84) 7.90 (1.89) 6.97 (1.90)7.37 (1.57)6.42 (1.63)
PC7.72 (1.59) 8.14 (1.52) 7.36 (2.40)8.00 (1.62)6.80 (1.81)
BMPC7.72 (1.92)7.81 (1.89)7.06 (1.80)
Other7.10 (1.83)7.69 (1.92)5.33 (2.43)
Negative
Students4.55 (1.74) 1.81 (1.74)
Walkers4.43 (2.05) 1.65 (1.71)
BM4.08 (1.80) 1.24 (1.76) 4.17 (2.19)1.86 (1.66)2.33 (1.27)
PC4.07 (2.10) 1.00 (1.21) 3.75 (1.93)1.62 (1.36)2.69 (1.09)
BMPC3.94 (2.33)1.84 (1.78)2.63 (1.63)
Other3.91 (2.26)2.41 (1.62)3.72 (2.00)
Lonely
Students3.37 (2.60) 1.07 (2.00)
Walkers3.89 (2.87) 1.63 (2.68)
BM3.54 (2.83) 0.77 (1.88) 3.41 (3.21)1.11 (1.95)1.53 (1.82)
PC3.66 (3.08) 0.65 (1.41) 2.92 (3.17)0.96 (1.68)2.08 (1.60)
BMPC3.24 (2.98)1.17 (2.24)1.94 (2.20)
Other2.41 (2.87)1.27 (2.04)1.72 (1.97)
Happy
Students7.06 (1.56) 7.39 (2.10)
Walkers7.12 (1.66) 8.52 (1.48)
BM7.34 (1.50) 8.57 (1.21) 7.32 (2.20)7.98 (1.67)7.89 (1.25)
PC7.42 (1.75) 8.61 (1.52) 7.62 (1.94)8.54 (1.29)8.36 (0.93)
BMPC7.47 (2.06)8.51 (1.46)8.09 (1.79)
Other7.74 (1.73)8.54 (1.70)7.50 (2.11)

Comparing biodiversity monitoring volunteers to their student control group for general well-being there was one significant difference, as volunteers rated their ‘health’ significantly higher than students did (Wilcoxon rank sum test; p<0.05; Figure 4). Volunteers also rated their ‘negative emotions’ slightly lower than students did (Wilcoxon rank sum test; p<0.06). When comparing their activity-related well-being, however, there were significant differences in all elements of well-being, except ‘loneliness’, as volunteers consistently rated positive indices significantly higher and ‘negative emotions’ significantly lower than students did (Wilcoxon rank sum tests; p<0.01 for all).

78972e2d-f911-486a-92bc-821a1656e881_figure4.gif

Figure 4. Differences between biodiversity monitoring volunteers and students in their level of general and activity well-being.

Differences between biodiversity monitoring volunteers (BM) and students (S) in their level of general well-being (light grey) and activity well-being (dark grey) (±SE bars). ‘Engagement’, ‘relationship’, ‘meaning’, ‘negative emotion’ and ‘health’ factor scores were means of factor item aggregates. ‘Loneliness’ and ‘happiness’ were single item measures (Wilcoxon rank sum test; ·p<0.06, *p<0.05, ***p<0.001).

Comparing practical conservation volunteers to their walker control group for their general level of well-being there was one significant difference, as volunteers rated ‘relationships’ significantly higher than walkers did (Wilcoxon rank sum test; p<0.01; Figure 5). This difference in ‘relationship’ ratings was even more significant when comparing their activity-related well-being (Wilcoxon rank sum test; p<0.001). Also negative indices showed differences in activity-related well-being with volunteers rating their ‘negative emotions’ significantly lower than walkers (Wilcoxon rank sum test; p<0.05) and rating their ‘loneliness’ lower than walkers.

78972e2d-f911-486a-92bc-821a1656e881_figure5.gif

Figure 5. Differences between practical conservation volunteers and walkers in their level of general and activity well-being.

Differences between practical conservation volunteers (PC) and walkers (W) in their level of general well-being (light grey) and activity well-being (dark grey) (±SE bars). ‘Engagement’, ‘relationship’, ‘meaning’, ‘negative emotion’ and ‘health’ factor scores were means of factor item aggregates. ‘Loneliness’ and ‘happiness’ were single item measures (Wilcoxon rank sum tests; · p<0.06, *p<0.05, **p<0.01, ***p<0.001).

Comparing the two different types of environmental volunteers, the biodiversity monitoring volunteers and the practical conservation volunteers, there were no significant differences in their levels of general (Wilcoxon rank sum tests; p>0.07 for all) or activity-related (Wilcoxon rank sum tests; p>0.30 for all) well-being, suggesting that irrespective of the type of environmental volunteering performed, the effect on well-being is equally positive.

RespondentDatetypea1_prog1e1_abso1p1_joyf1n1_anxi1a2_achi1h1_heal1m1_purp1r1_supp1m2_wort1e2_exci1h2_sati1p2_posi1n2_frus1a3_resp1n3_sad1e3_time1h3_comp1m3_dire1r3_sati1r2_arrp1p3_cont1eng1rel1mea1hea1neg1lone1happ1Activity-rel_WBActivity_hoursa1_prog2e1_abso2p1_joyf2n1_anxi2h1_heal2a2_achi2m1_purp2r1_supp2m2_wort2e2_exci2h2_sati2p2_posi2n2_frus2a3_resp2n3_sad2e3_time2h3_comp2m3_dire2r3_sati2r2_appr2p3_cont2eng2rel2mea2hea2neg2lone2happ2General_WBWeatherFrequencyHours_monthTenure_yearsorgVMCodeVMYearsNoInGroup
23914/10/15Student5265485764866462876743.56.6666666675.585.666666667255.43478260932111563641821620722210.753.3333333333.56.6666666671.333333333004.13043478321822BOU04M1066
25914/10/15Student856779581011088868101099858.6666666677.59.666666667736742000010668000101010599990871.6666666673.666666667004.86956521722BOU04M1066
17414/10/15Student3638273624235678635455.2552.556.66666666793443222722712622823628732.257.3333333331.56.3333333332024.73913043522572BOU04M1066
40915/10/15Student101.54534531812539749418724.757.66666666714.6666666675.666666667424.30434782622POO12W814
39519/03/15PC668826768887.15384615446543444651445851447652.756.3333333334.544.333333333224.739130435242017LON01E435
21104/11/15Student6779576445778588755556.754.666666667578.333333333755.130434783676353661065346575547434.75763.6666666676135.0434782614142BRI10C1428
7715/02/15PC36886323233287834223252.66666666723.3333333338723.2608695654.56762667776561616666666.256.33333333375.6666666671.333333333236.43478260935657DOR05A98
40711/11/2015Student645474736576445622114.809523811.55624665545547455445464.54.6666666674.555.333333333334.7391304354010POO12W84
22804/11/15Student3440483525747668838625.256.3333333332.57.6666666674.33333333364577560106556610727241066545.255.3333333335.5101.333333333046.739130435421632BRI10C1428
17911/11/2015Student6872674248676868467347.75445.6666666674.666666667565.7391304351.55442344243567673667653.5544.6666666675.333333333344.6956521744315310POO12W84
17014/10/15Student6755755367357658533566.753.6666666675.54.3333333335.666666667655.086956522466525557765548035678557.333333333652156.173913043231602OAK091237
18415/10/15Student4672665667652827661326.753.3333333335.562155.8695652172.57650565788771508656466.755.6666666676.560.333333333056.739130435231032POO12W814
19614/10/15Student9786768978683348776787.757.3333333337.56.3333333334.3333333332774655181058145627176710965.25936.3333333331.333333333156.739130435231462BOU04M1066
19814/10/15Student7876667986647468777767.257.6666666677.56.3333333336.333333333756.043478261165438107353870722888653.55.666666667681.666666667356.391304348231612OAK091237
22914/10/15Student67815778888819198765686.3333333337.57.6666666671187.56521739153320420742651813658642.5725.3333333330.666666667055.26086956522322BOU04M1066
23204/11/15Student87879889897729388877887.66666666787.6666666674287.69565217467751588957460916759956.2596.55.3333333330.666666667057.13043478343872BRI10C1428
24114/10/15Student4674385788878738878677.2576.585176.6521739133.50150851621860903808852.57.3333333331.580055.60869565222612BOU04M1066
24614/10/15Student5673789298894926996896.755.33333333398.3333333333297.47826087574608777738616038466646.333333333780.333333333056.652173913221442BOU04M1066
41004/11/15Student1077530953103686896010610873.59.333333333394.666666667056.34782608742BRI10C1428
7819/03/15PC675745710483577610336477.56.6666666675.53.6666666676.666666667765.34782608768994398884147848126657.56.66666666781.6666666675355.8260869572107LON04S1010
8004/02/15PC25262422133377767203341.6666666671.54.6666666676.666666667923.0434782615.5876057778737290877987787.550.666666667057.391304348152617WEL04J215
204/07/15BM5436345565244655143444.2545.52.3333333335644.173913043256513446664414133564655.33333333353.3333333331055.47826087151459AYL10K216
27029/08/15Walker57378857646589465375456.3333333335.56.3333333336.333333333545.347826087346616373356621019685556.54.333333333561.333333333256.17391304325223011AAA00X125
28815/08/15Walker5444484233838873832533.533.586.333333333834.1739130432.2547629560889728479845573792.666666667456.43478260925693511AAA00X125
41715/08/15Walker07779333386666922014.52.255555855555871122755554.25557.6666666672.666666667555.43478260925431011AAA00X125
29608/08/15Walker7872898885786716877876.57.666666667883277.3478260874.5555010857561055555955555.255.66666666759.6666666673.333333333056.3043478261514020
22123/04/15Student5666686661076662107777786.66666666767.3333333334.666666667076.78260869626666766666662600766664.5666.6666666672.666666667665.9130434781111BAT04C19
16614/10/15Student5777535847477458377457.256.3333333334.53.3333333336.333333333665.26086956546541346522563730448652.756.333333333442.333333333465.086956522221252BOU04M1066
18528/10/2015Student677558756725655783645756.565.333333333365.652173913376647777776766477910696.57.66666666776.6666666674.666666667466.782608696222742BOU04M3016
19014/10/15Student66734766774737187688677.3333333336.562.333333333276.7391304353623079867383882076788277.57.3333333333.333333333266.08695652222122BOU04M1066
20314/10/15Student6874565557775639777667.75656.6666666674166.47826087422608510517609017710842.5637.3333333330065.86956521723832BOU04M1066
21028/10/2015Student76756784777658487633373.3333333337.574.66666666735647751766885775634867665.25777.3333333333166.608695652233242BOU04M3016
21928/10/2015Student6786587679685857876677.75677.3333333335.333333333286.78260869666641687975651700768973.758.66666666776.3333333330.666666667066.826086957233252BOU04M3016
40514/10/15Student566387669455869637686.42857142943570643867672716658776.257.6666666674.561366.434782609236032OAK091237
40804/11/15Student1077620685823757710755772.756.6666666673.56.6666666672.666666667065.86956521742BRI10C1428
41114/10/15Student1047553765865763624667954.7585.56.6666666672.666666667166.39130434822BOU04M1066
6803/08/15BM385121075368636581035546.75559.3333333333875.8260869573.5675110556649625049555655.3333333335.59.3333333331066.56521739143235EXE11J0.62
8826/11/14PC4677766666666666766666.25666.3333333336.333333333665.652173913567536666656521035665665.55.666666667662.666666667466.17391304332718BOU11K10
10130/11/14PC2539361416928684722224.52.66666666717.3333333338.333333333823.3043478264.578447987989821027975986.7578.592.666666667567.478260871108FOR09R1012
6604/07/15BM5575597766975917969986.258.3333333336.593.666666667177.173913043258809594769707069665675890367.1739130431419AYL10K216
22511/11/2015Student7767776877767756867766.57.3333333336.57.3333333336.333333333566.2608695651.57762777776763716876766.256.66666666777.3333333332266.913043478433010POO12W84
28422/08/15Walker8591988888782817789897.258.33333333387.3333333331.333333333198.0869565222.57777788487773772662565.753.66666666786.6666666675.666666667865.7391304351591011AAA00X127
3126/06/15BM77725771777739278597775.66666666777.3333333332.333333333176.95652173965460766165106110071079985.56.333333333690.333333333067.260869565311012SAL01B0.512
26701/09/15Walker66666666666666666666666666665.65217391326666366666452714487775.56.66666666763.6666666673665.8695652172572142021
16414/10/15Student7768716298164945176366.53.6666666677.515.333333333565.3043478263.58876166588197900168885.757714.333333333875.782608696251222BOU04M1066
16714/10/15Student5657556877257668444646.566.53.6666666676.666666667355.17391304346665577887663838477666.7577.553.666666667576.4782608723602OAK091237
17314/10/15Student6978767878478789563258.254.333333333758465.6956521746910855680108557789590088.750956.666666667575.826086957254822BOU04M1066
17614/10/15Student6673276864365648667666.25765.3333333334276.04347826146662766666662864666465.55.33333333366.3333333333.333333333076.260869565231112OAK091237
17715/10/15Student7868667977564667576667775.3333333336666.04347826127872667867675708577777.57.3333333336.55.6666666672.333333333177.043478261233662POO12W814
18015/10/15Student4949105555107777910563668.254.66666666755.6666666678.333333333765.56521739138108465101010107757587687998.333333333106.6666666674.666666667077.6521739132324102POO12W814
18114/10/15Student6869567558566768649787.5765.6666666677675.91304347847663579888374716368776.57.6666666678.53.6666666672.666666667376.695652174232242OAK091237
18328/10/2015Student8868667766677659579997.258.3333333336.55.6666666676.666666667686.4782608748999889799761807688888.57.666666667973.333333333077.7826086962132BOU04M3016
18604/11/15Student6668665445656476636655.755.3333333334.567744.82608695756556777985764626667575.2577.56.6666666674176.4782608743632BRI10C1428
18714/10/15Student69787765795649510687688.7566.565.666666667476.69565217446880677979780808888868.258.333333333770077.956521739233212OAK091237
18814/10/15Student6686668989688636672727.256865.666666667246.130434783557737575667677007557755.6666666676.573.333333333076.217391304231532BOU04M1066
19314/10/15Student66715779666779485610776.758.6666666676.564476.73913043546651699996673815767655.57.33333333396.3333333331.666666667077.13043478322612BOU04M1066
19914/10/15Student5773565968672739768787.7585.56.3333333332.666666667276.95652173947552675757682715577775.5755.6666666671.666666667076.739130435232042BOU04M1066
20514/10/15Student76756667577546487666776.3333333335.56.6666666674.333333333776.17391304356740778887771508788666.57.333333333870.333333333177.34782608725932OAK091237
20904/11/15Student25367712237371063741223.51.6666666671.576.333333333723.7826086965.565726578767728266656766.33333333376.3333333332176.73913043541552BRI10C1428
21414/10/15Student8782879788783937787787.578.572.666666667387.6086956525555075675678180457777575.56.3333333330.333333333076.826086957232612OAK091237
22014/10/15Student8775879777876824766656.256.33333333387.3333333334.333333333286.8260869575777178887977180577888787.570.666666667077.739130435231452BOU04M1066
22204/11/15Student2765584728676548878637.25737.3333333335865.6521739135.5846097688610639071078565.75779.6666666671277.4782608742332BRI10C1428
23114/10/15Student7763888687775736867876.5787.6666666673.666666667576.913043478456607107886883817878676.257.3333333337.57.6666666671.333333333177.47826087231032BOU04M1066
23628/10/2015Student7776778888877749889987.758.66666666787.6666666675.666666667187.3913043484.257866978778985749977777.7577.595477.173913043221032BOU04M3016
23814/10/15Student6683786666875937867666.756.333333333683.666666667376.78260869647870888888880904868686.757.333333333880077.913043478231322BOU04M1066
25514/10/15Student7983788988984511968776.5888.6666666672.666666667287.3913043484.57673867986974716988776.2587.58.6666666672.666666667877.086956522221012BOU04M1066
25614/10/15Student5674487989982627968867.258.3333333337.58.6666666672.666666667287.30434782647771967867982615967776.57.3333333336.591.333333333177.391304348232612OAK091237
25714/10/15Student67748986579968379577776.6666666676.594.333333333277.08695652248662986878973513966775.7576.592177.173913043221052BOU04M1066
41214/10/15Student10476809108108910811002967576.257.33333333389.3333333330.333333333078.04347826122OAK091237
6105/08/15BM898689810997868371078888.258.6666666678.58.6666666675987.521739133845088598410708001078773.2586.59.3333333330077.391304348321023NEW11N104
2301/07/15BM7772777777573715777776.5776.33333333322773.58880788788782807778887.757.666666667870.666666667077.956521739132417DAR04S912
7625/02/15PC2428232534248795433413.7542.538.333333333753.1739130432.57692577688475806576687.2567.54.6666666672.333333333176.91304347823647ROC01J1213
7919/03/15PC5742675855333777333545.755.33333333354.3333333334355.2173913045.5866049109999721025682576.55.3333333339.56.3333333331.333333333777.173913043256527LON01E435
10308/02/15PC6873787667773737766667.2566.57.3333333333576.69565217448760777885771707777886.257.6666666677.570.333333333177.5217391313457BAR07W0.6711
14004/02/15PC55625994959538389888866.666666667992.666666667187.2608695654666191082859631026974675.754892277.086956522155167WEL04J215
8916/11/14PC5746676664644635746655666.6666666674.333333333375.6956521742.53443574533766726777774.256.3333333333.573.666666667375.739130435621118LYM01F108
9026/11/14PC5667676565766777658876766.6666666676.666666667565.8260869574.599827489873638186888888.33333333384.3333333332077.52173913352518BOU11K10
9916/11/14PC589537586778473877977885.5740872.55883787937784668768577.757.33333333357.3333333334.333333333076.86956521764618LYM01F108
10022/11/14PC1010106108108910688105771010899.258.6666666679.576.333333333398.1304347835778077710868100900868775.258.3333333337.57.6666666670077.695652174434858SHE12P313
11130/10/14PC8688678886775835888866.25887.3333333335.3333333331874.57440788844107210031077773.757.33333333369.3333333330.666666667077.260869565232012827OctRMR1111
12130/10/14PC7108198888978381988107898.33333333387.6666666671.666666667188.2608695654.5444178809787190988875658.580.666666667077.17391304325226827OctRMR1111
14918/11/14PC472659736696693510544653.6666666676.59.3333333335355.82608695759950991010988921004989996.59.3333333339.58.6666666670.666666667078.608695652142458SOU04B1412
15327/11/14PC788281086689828251055877.256.33333333379.6666666672587.4347826095787051077778717158861086.757.66666666778.6666666670.666666667177.652173913531138CAM09D1014
39216/11/14PC526565688867675359988.6666666674347034191555610155161065.258.33333333314.6666666672.333333333175.60869565262158LYM01F108
1731/07/15BM3638474754564758633445.254.6666666674.565.666666667334.86956521724978578999671719687778.57.6666666678.55.6666666673.333333333976.91304347811219AYL10K223
2901/09/15BM79757777787858687677787775.333333333776.739130435266637668667607027676757671076.782608696219AYL10K222
3231/07/15BM97636874676747488687776.3333333336.57.3333333333.666666667176.9130434782.587718777888717168776676.6666666677.581177.47826087131519AYL10K223
5331/07/15BM87788977767610764996556678.3333333338766.043478261277729778998907110855778.256.66666666788.3333333331677.56521739112359AYL10K223
26230/05/15Walker5779235347245676277466.754.6666666674.52.3333333337174.86956521734567767787673678677576.56.3333333337.56.3333333335.666666667076.347826087351001011AAA00X120
26306/06/15Walker3231234022345777332323.51.666666667334.333333333223.56521739147880377787371818477767.7577.53.3333333330.666666667177.08695652225402011AAA00X130
26930/05/15Walker5663566476676747763626.254.3333333336.56.3333333334.333333333765.5652173912.755761755576761606767676.256670.666666667076.78260869635121011AAA00X120
27530/05/15Walker4652776775765727773235.7546.573355.9130434782.53771787778762417757587.256.333333333771.333333333176.91304347835222011AAA00X120
27615/08/15Walker5775696777764858542547.254.6666666676.574.666666667865.8260869572.251078071090888701002537686.254.3333333338.56.6666666670577.17391304325382511AAA00X125
28130/05/15Walker5758386356668888853556.53.6666666675.57.3333333338755.0434782612.757882878597883818876687.755.6666666678.582377.4782608735444011AAA00X120
4303/07/15BM7974887688886729887778.256.6666666677.584687.2608695654.58980688886580709578878885.3333333330077.8260869572326512NOR04G204
1526/06/15BM3616166877337855869834.758.3333333336.55.6666666676275.43478260967961777986672807778109797.56.6666666671077.782608696322312SAL01B0.512
7426/06/15BM799781010810101073101810910989910103.666666667088.65217391368970101010108910100100510101010107.5109100079.2608695653217512SAL01B0.512
2128/07/15BM5631567664662766766644.7566.56.3333333333555.78260869657851488687572637578866.757.33333333384.6666666672176.9565217392513413LON02D1712
26501/09/15Walker6666666156454735556575.7545.554.333333333175.65217391327772757266563717666566.754.3333333336.562276.391304348252010142021
27419/08/15Walker6872778677666737767667.256.3333333337.56.6666666673.666666667276.73913043527672877579785813878786.256.66666666777.6666666672.666666667676.956521739457025141015
23323/04/15Student109819998978898986787987.66666666797.6666666676.333333333987.260869565477777775768676788787876.66666666777.6666666677786.34782608711911BAT04C19
24023/04/15Student9889989789879988896788.256.6666666678.588.666666667676.95652173936882865566887818887787.56.3333333335.583.333333333187.17391304311111BAT04C19
18214/10/15Student6676777669478931065967876.55.6666666675.666666667376.56521739158882766886780607779777.258770.666666667087.652173913242812BOU04M1066
19114/10/15Student87927676486947286698887.6666666675.562.666666667297.30434782649540898287871804759775687.6666666670.333333333087.3478260872212BOU04M1066
20014/10/15Student6674677768575828769877.2586.56.3333333333.666666667276.91304347848871798889782805788787.257.666666667871087.956521739211052BOU04M1066
20628/10/2015Student34876775476778210789797.2575.56.6666666675.333333333086.6956521744867067810866701002678975.259860087.652173913222732BOU04M3016
21504/11/15Student88827785977851027789887.57.3333333338.573187.69565217467881777988782807778877.758.3333333337.571087.869565217432532BRI10C1428
21614/10/15Student7666578998783636788886.58.3333333338.574277.13043478347780767978780806779887.258.666666667770087.913043478231562OAK091237
22614/10/15Student5573586758684829888887.257.6666666675.57.3333333333287.1304347834555187108978819078798868.3333333339.580.666666667087.913043478221832BOU04M1066
23414/10/15Student79947810910106948310977889.58107.6666666673.66666666748846871988987985108109867887.333333333894.666666667787.47826087232722OAK091237
23515/10/15Student787469797107759110768878.758.33333333377.6666666673.333333333387.565217391258618581078957907899987.259.3333333337.58.3333333332.666666667087.739130435232842POO12W814
24414/10/15Student8898788998874736878777.7588.585287.39130434853341797677867726877865777.6666666673.333333333286.60869565222942BOU04M1066
24515/10/15Student7593109910997939288410997.759.666666667982.666666667098.3043478262.5895083610589638099710987.759.6666666675.58.6666666671087.913043478252052POO12W814
25815/10/15Student8782710891079879110988788899.3333333333.333333333088.17391304336550857747107710051079675.57.3333333335.59.3333333332.333333333087.217391304232562POO12W814
40614/10/15Student897959606776472958776.57142857146980977108798090889101088107.58.6666666670088.608695652232222OAK091237
41314/10/15Student10410770679109767010086710897.259.333333333960088.30434782622OAK091237
41528/10/2015Student10410680101071098108090781010887.259.33333333389.3333333330088.86956521722BOU04M3016
5004/08/15BM99718899998859778898888.666666667984.333333333287.95652173949882899999791912799996.75997.3333333331.333333333188.304347826451023NEW11N109
1017/07/15BM68637477764755687857776.333333333754.666666667666.173913043477587598108586979777987.2589.56.3333333337087.0434782612436124TRU05J38
3817/07/15BM66657788888887648899868.66666666787.6666666676.333333333776.6956521743666686779810856061088886.57.66666666789.3333333333.666666667887.13043478322324TRU05J38
39103/08/15BM438233638792351732323.5988010899108982817768897.758.3333333339.58.6666666671088.43478260942115EXE11J0.62
1109/09/15BM71075537799587859786888.757855.666666667876.65217391327108098599778550388881078.333333333781.666666667087.8260869572319206NOR04G2015
1909/09/15BM7875667778567827767777.57764.666666667176.73913043568880878988881807889887.758.666666667880.333333333088.3043478262513.5106NOR04G2015
2501/07/15BM79917881079692817676688.57.3333333337.56.6666666671.333333333187.8260869573810518789797727087888788.3333333337.57.3333333331087.956521739131227DAR04S912
3401/07/15BM7874688879775747779877.758.3333333337.57.3333333334.333333333187.3043478262.57870888988881907878887.58.333333333880.333333333088.21739130417DAR04S912
4201/07/15BM7665787766875838867676.56.6666666676.584.333333333476.7391304352.57871778777772718878577.56.6666666677.57.3333333331.333333333187.478260871107DAR04S912
8108/02/15PC37374644454345410545456.254.33333333345505547970699998760908761010889.66666666796.6666666670088.3478260871343.57BAR07W0.6711
8519/03/15PC79446669556811059559766.758.3333333335.55.6666666673.333333333566.6521739135810916999988929096788898.33333333396.6666666671088.43478260925817LON04S1010
8722/02/15PC8976977987664853567766.57.6666666677.565376.69565217438970588978870903787866.7587.56.6666666670087.826086957531737WEL04J214
9819/03/15PC75776758677819210779767.2585.573.333333333766.826086957677776788678101319778887.58773087.3913043482127LON04S1010
10815/02/15PC88748888586737358787877.6666666676.57.3333333333.333333333287.26086956548871778888894918888887.75887.666666667218833607DOR05A98
11815/02/15PC7962587777782919877767.75777.6666666671.666666667877.17391304358891978887880806868897.5888.3333333330.333333333088.17391304333527DOR05A98
12019/03/15PC76625768878747358887767.66666666777.6666666673676.82608695777671788886772713777775.57.333333333871.333333333287.21739130424727LON01E435
12825/02/15PC79667871088774947977687.57.6666666677.584.666666667077.3913043485876088810878901005989796.258.66666666788.3333333330088.347826087331047ROC01J1213
13819/03/15PC642669463695586494334443.595.666666667555.13043478379980899798891808987798.25798.3333333330.333333333588.30434782624937LON01E435
14308/02/15PC787489797897610399877887.666666667794.333333333787.4782608741010909101091089100100109577109.257.6666666671090089.13043478313557BAR07W0.6711
15422/02/15PC766571077789938371078886.757.66666666779.6666666673.666666667297.6086956523778210799869719061079786.758.3333333338.59.6666666671188.13043478353347WEL04J214
39325/02/15PC777366776666635676666.42857142959771589998780904678886.58.333333333960.333333333087.956521739331157ROC01J1213
8322/11/14PC8863567368466877643337.2536.55.3333333335.333333333855.30434782659970868888561716678887.5885.6666666670.666666667087.739130435441658SHE12P313
8430/11/14PC6782666765372716723366.54.33333333365.3333333331.666666667476.04347826158971779987781707778877.58.3333333338.570.666666667187.913043478131018FOR09R1012
8616/11/14PC6653576676663756553555.754.6666666676.563.666666667765.65217391345771775666766711777865.2575.572.666666667186.5652173916532128LYM01F108
9622/11/14PC7875677778777856776677.256.333333333775.666666667566.4782608758861888898872818878887.588.581.333333333088.0434782614258SHE12P313
10218/11/14PC57566765887678648657565.66666666777.3333333336.333333333655.78260869651088188871068801025858886.757.666666667981288153358SOU04B1412
10930/10/14PC6864888867683828868787.257.66666666777.3333333333087.43478260956660696666980808877776.56.66666666768.6666666670087.56521739124204.5827OctRMR1111
11326/11/14PC77757778777919378799878.66666666777.3333333333187.6086956524.57771767767781715778886.57.6666666676.56.6666666671187.391304348331048BOU11K10
11726/11/14PC6676687578787878888777.256.66666666777.6666666676.666666667486.652173913699729889978928018898868.6666666678.581.333333333188.0434782613326408BOU11K10
12319/11/14PC6762586666863722866665.256682.333333333276.47826087476607877768806068787867.333333333780087.60869565222218CAM09D105
14126/11/14PC89739885789889471089887.757.3333333337.595987.34782608746782787877891707778887.25877.6666666671087.7826086963540308BOU11K10
15826/11/14PC68228105856107291810575766.6666666675101.666666667177.2608695654.51070010979861082100710888958.3333333337.59.6666666670.666666667088.260869565353308BOU11K10
39722/11/14PC88636788886627277101077.619047619510880881010106710010067888878.666666667107.3333333330088.608695652443258SHE12P313
304/07/15BM7847736856356754276645.56.6666666675.52.6666666676765.173913043299512989109291908278887.758.333333333920.666666667087.695652174151939AYL10K216
401/09/15BM2428522433536435226433.54.6666666672.535.666666667433.608695652278425869775719084107786.757.6666666676.54.6666666671287.347826087209AYL10K222
501/09/15BM6763445778363735466666.56.33333333363.6666666673365.956521739277715778886727164677777.3333333337.551.333333333287.08695652222259AYL10K222
2204/07/15BM78735775786777356686876.33333333376.3333333334.333333333686.4782608746661755656672724656665.5656.3333333331.666666667386.30434782615619AYL10K216
4031/07/15BM8872888888882923883576.55.333333333882577.21739130431098089910898911003877777.2588.580.333333333188.34782608712139AYL10K223
4531/07/15BM8864687878883837887777.257.333333333783.333333333387.347826087289708881087882807768887.58.66666666787.6666666670.666666667088.130434783141839AYL10K223
6404/07/15BM7779897578972737967777.256.333333333794.666666667776.82608695738881988888987806976787.57892.666666667087.869565217151469AYL10K216
26430/05/15Walker4657458566568853338565674.3333333336.666666667775.0434782612.578822108445373716597796.75663.3333333332086.86956521735181011AAA00X120
27315/08/15Walker6779877777678758773557.25576.6666666677.333333333965.7826086962.257783756777773517776567.2566.572.333333333286.82608695721123011AAA00X125
27815/08/15Walker8885776688783837777777.756.666666667773.666666667577.0434782612.258884777777781603778886.57.666666667771.666666667187.39130434823373011AAA00X125
28015/08/15Walker577167658677410388705773.33333333377.3333333332.666666667376.6086956522.2588937109910667010696109910899.56.3333333333088.304347826254511AAA00X125
28222/08/15Walker445838455574868274344444.57.3333333338664.34782608732570805075761132786684.75467.3333333331.333333333185.78260869615122011AAA00X127
29122/08/15Walker78868887887977849936675.333333333887586.6086956522.559948897958878798999988.333333333986887.304347826157.5911AAA00X127
29330/05/15Walker7883687687875847876777.56.3333333337.584377.0434782612.588828899999911005888887.58.33333333398.3333333331088.43478260935151511AAA00X120
29729/08/15Walker8782888898888887888887.588.586487.3478260873889099919888110638888975.66666666798.3333333332.333333333087.86956521725194011AAA00X125
30222/08/15Walker3753783536977958941346.5338.6666666675855.3478260872.565838889889919181099997.259891.666666667288.26086956515251011AAA00X127
30329/08/15Walker67686955558566669654664.66666666758.6666666676.666666667065.86956521746666666666777777788886.257.33333333366.6666666676.666666667686.21739130425151011AAA00X125
42206/06/15Walker103.57772777777773003877776777.3333333331.666666667186.869565217211AAA00X130
1626/06/15BM57284586875410759874336.254.333333333867.666666667655.1304347835.51097310897999737038845775.333333333992087.7391304353540212SAL01B0.512
2429/07/15BM55545766666645447577756.66666666766.6666666674775.782608696268727889677819028879968.33333333377.3333333331687.478260871224012SAL01K111
6309/07/15BM8862586989984929969978978.6666666672.666666667197.91304347861086091010101010101061008107107989109.6666666672088.95652173913401012POO08G25
628/07/15BM101072637871048282748101088.59.33333333373.6666666672287.60869565241010810310101010103101010043101010108101036.666666667087.78260869625222513LON02D1712
928/07/15BM3417355123333822522232.51.6666666673.54.3333333334143.82608695735770676666671100106677107.56.666666667660.333333333087.47826087243213LON02D1712
1328/07/15BM7744568898355957774756.56.3333333338.55.3333333334.666666667676.21739130439972789999671718599998.259961.333333333288.130434783258113LON02D1712
3328/07/15BM7882678777873817776677.56.3333333337.57.3333333332077.3478260872.587508578788821006968776.57.66666666778.3333333330.666666667087.73913043525141213LON02D1712
4928/07/15BM665568676687384786109868.666666667684077.0434782613.51010808101010988964078101010108.25109.582088.7391304352415313LON02D1712
27108/08/15Walker788346655667594677108977.6666666675.56.3333333334086.9565217394.5767048848671001006985696.25586.6666666670087.65217391315266014020
28601/09/15Walker7875988688774878878777.75787.6666666675.333333333776.9565217392788199991088901019889988.2599.58.3333333330.666666667088.739130435251640142021
29201/09/15Walker6875497557865767747567.255.666666667685.333333333356.13043478327771867898880804897796.57.333333333880.333333333087.913043478252140142021
16514/10/15Student14661436050788410507056.254.3333333331.536654.04347826138670578776762807578796.57.3333333337.55.6666666670.666666667097.4782608722522BOU04M1066
16904/11/15Student489534797103831210475789.25773.6666666673.333333333186.5652173915.55775564864572526468876854.6666666673196.39130434841242BRI10C1428
17215/10/15Student7875779999255736579787.58.33333333394.6666666674.333333333087.086956522210980691010109791909571010108.75101060.333333333098.913043478231252POO12W814
17528/10/2015Student7565456676683728587776.256.6666666676.55.3333333333.333333333186.608695652487801088108710104708988887.58.66666666789.6666666671.333333333098.4782608721232BOU04M3016
19214/10/15Student78836779993748210868778.758863577.2608695653910907810510107801011071091099.7581070.333333333098.956521739242812BOU04M1066
19514/10/15Student7865777378764737586347.25476.3333333334556.130434783210107076810107780905710101077.2510970098.565217391232232OAK091237
20114/10/15Student896647710856738510658897.58.6666666677.56.3333333334.666666667686.91304347868961996744881915879876858.3333333331097.69565217423652OAK091237
20214/10/15Student81037108899877610410499937.7598.56.3333333335.666666667067.39130434851010608109109108100100881010888.59.333333333980099.173913043232832BOU04M1066
21214/10/15Student6777676456754667755556.754.6666666675.575.666666667655.56521739157871998999991806889997.598.58.6666666670.666666667098.565217391232022BOU04M1066
21828/10/2015Student2388586576756516747575.755.6666666676.57.3333333335085.91304347846662777875752502779884.758.333333333771.333333333097.043478261222942BOU04M3016
22414/10/15Student57556859787588587685577.33333333367.3333333336356.21739130449810010101010108890909887888.758.333333333108.666666667019923602OAK091237
22714/10/15Student67725875577638210853557.754.33333333367.6666666672.333333333666.39130434858101008897910810010010881099108.666666667980099.130434783231812BOU04M1066
23014/10/15Student6886687678784829867778.256.66666666777.6666666674287.17391304345660965656884808988786.5758.6666666671.333333333097.434782609231602OAK091237
24215/10/15Student87746877788766388810787.58784.333333333287.304347826266608678799628089710997.25978.6666666670.666666667098.043478261253592POO12W814
24314/10/15Student5683698889783728878887.758882.666666667397.5652173913888410898979927181088777.757.66666666799.6666666672.333333333298.17391304322512BOU04M1066
24815/10/15Student7789998778865878887677.756.6666666677.58.3333333337287478859999999918139488878.333333333992.333333333997.652173913252002POO12W814
25014/10/15Student66925988898729210871010108.59.33333333388.3333333332098.2608695654788298889898110059798107.258.3333333338.591198.3913043482342BOU04M1066
25215/10/15Student87978910781088686109757796.33333333398.6666666676.333333333667.217391304365701059889107470787108778.6666666678.59.3333333331.333333333097.956521739232532POO12W814
25328/10/2015Student7868898878966879897777.757.3333333337.58.6666666677676.9130434784998889101099996937998898.258.6666666679.58.6666666675.666666667598.043478261242842BOU04M3016
25414/10/15Student5993810959108948310899979.57.66666666798.6666666673.333333333298.1739130434997091071079108010039710101071079.3333333330098.826086957252842OAK091237
This is a portion of the data; to view all the data, please download the file.
Dataset 1.Raw data from study 1, the onsite nature-based activity survey.

Study 2: How well do volunteers sustain the memory of the immediately experienced sense of well-being after they have gone home? In the online survey, current volunteers were asked to remember the last time they volunteered and rate how they felt during that time. The ‘relationship’ (Kruskal-Wallis test; χ2(3) = 16.18; p<0.01), ‘meaning’ (Kruskal-Wallis test; χ2(3) = 11.69; p<0.01) and ‘negative emotion’ (Kruskal-Wallis test; χ2(3) = 9.43; p<0.05) elements showed significant differences between different types of volunteers (Table 7 and Figure 6). Biodiversity monitoring volunteers consistently rated positive indices lower than any other types of volunteers, and significantly so the ‘relationship’ element compared to biodiversity monitoring volunteers also doing practical conservation work (Dunn’s test; z = -3.44; p<0.01) and non-environmental volunteers (Dunn’s test; z = -3.46; p<0.01), and the ‘meaning’ element compared to non-environmental volunteers (Dunn’s test; z = -3.12; p<0.01). Also practical conservation volunteers rated ‘meaning’ significantly lower than non-environmental volunteers (Dunn’s test; z = 2.67; p<0.05). For ‘negative emotions’, however, both practical conservation volunteers (Dunn’s test; z = 2.95; p<0.01) and biodiversity monitoring volunteers also doing practical conservation (Dunn’s test; z = -2.48; p<0.05) rated them significantly lower than non-environmental volunteers.

Comparison of volunteers’ experienced well-being just after volunteering ended (Study 1), their remembered volunteering-related well-being up to 12 months after volunteering (Study 2) and their general level of well-being in life (paired data from Study 1) showed that biodiversity monitoring volunteers consistently rated experienced positive indices significantly higher than their well-being generally in life (Kruskal-Wallis with post-hoc Dunn’s tests; p<0.01 for all); remembered well-being was rated intermediate and significantly different from immediately experienced well-being for ‘engagement’, ‘relationship’ and ‘health’ (Kruskal-Wallis with post-hoc Dunn’s tests; p<0.01) and significantly different from well-being generally in life for ‘meaning’ and ‘happiness’ (Kruskal-Wallis with post-hoc Dunn’s tests; p<0.01; Table 7; Figure 7). Practical conservation volunteers showed the same trend and also rated their experienced ‘relationship’, ‘meaning’ and ‘happiness’ significantly higher just after volunteering and when later remembering it compared to generally in life (Kruskal-Wallis with post-hoc Dunn’s tests; p<0.001). Both types of volunteers rated ‘negative emotions’ significantly lower just after volunteering and when remembering later than generally in life (Kruskal-Wallis with post-hoc Dunn’s tests; p<0.001 for all).

78972e2d-f911-486a-92bc-821a1656e881_figure6.gif

Figure 6. Remembered volunteering-related well-being of different types of current volunteers

The remembered volunteering-related well-being of different types of current volunteers (±SE bars) with significant differences found for ‘relationship’, ‘meaning’ and ‘negative emotions’ (Kruskal-Wallis tests; p<0.05, **p<0.01). ‘Engagement’, ‘relationship’, ‘meaning’, ‘negative emotion’ and ‘health’ factor scores were means of factor item aggregates. ‘Loneliness’ and ‘happiness’ were single item measures. BMPC, biodiversity monitoring volunteers also doing practical conservation work.

78972e2d-f911-486a-92bc-821a1656e881_figure7.gif

Figure 7. Experienced, remembered and general well-being of environmental volunteers.

Experienced well-being just after volunteering ended and remembered volunteering-related well-being up to six months after volunteering compared to volunteers' general level of well-being in life for volunteers in biodiversity monitoring and practical conservation volunteering (±SE bars; Kruskal-Wallis tests; *p<0.05, **p<0.01, ***p<0.001).

There was no effect of time since current volunteers last volunteered within the last six months on their well-being ratings (Study 2, n=277; Kruskal-Wallis; p>0.05 for all). Comparing the baseline general well-being of volunteers from Study 1 (n=191) and non-volunteers, defined as people not having volunteered for at least 6 months, from Study 2 (n=51), there were no significant differences in ratings for any well-being elements (Wilcoxon rank sum tests; p>0.05 for all).

Persontypeperiodgendereduemployagecountryvorgtime_outdoorsva1_progve1_absovp1_joyfvn1_anxivh1_healva2_achivm1_purpvr1_suppvm2_wortve2_excivh2_sativp2_posivn2_frusva3_respvn3_sadve3_timevh3_compvm3_direvr3_sativr2_apprvp3_contvlonevhappgena1_proggene1_absogenp1_joyfgenn1_anxigenh1_healgena2_achigenm1_purpgenr1_suppgenm2_wortgene2_excigenh2_satigenp2_posigenn2_frusgena3_respgenn3_sadgene3_timegenh3_compgenm3_diregenr3_satigenr2_apprgenp3_contgenlonegenhappMactivity_WBMgeneral_WBvEngvRelvMeavHeavNegLonelyHappyfrequencytenure_yearsHours_month
1PCPotentialFemaleFirst degree (Bachelor)Part-time employment19United Kingdom3530652001024101010650011033.3913043484.750144.66666666710300
2BMPCPotentialMaleLeft school at 18 (e.g., A levels)Student21Germany897398999988381989899788.1304347838.58.66666666798.3333333332.3333333337800
3OtherPotentialFemaleMasters degreeNot currently employed23Greece810889109910988310299910109188.60869565299.6666666679.58.6666666674.3333333331800
4PCPotentialMaleMasters degreeStudent24United Kingdom798676878966896988566966.478260878.756876.6666666679600
5BMFormerFemaleMasters degreeFull-time employment24France25178657789874941038610988087.6086956527.258.66666666785.666666667408513
6PCPotentialFemaleFirst degree (Bachelor)Part-time employment24United States354924354306647702343733.3043478264.7543.50.6666666677.3333333337300
7OtherFormerFemaleFirst degree (Bachelor)Student24Australia651998688888988673788777387.478260878.257.3333333338853811200
8PCPotentialFemaleFirst degree (Bachelor)Full-time employment24Greece654778798888898484797857887.1304347837.5789588200
9PCFormerMaleFirst degree (Bachelor)Student25United Kingdom10557891975867973719979980988.258.6666666675.591.66666666709225
10PCFormerFemaleFirst degree (Bachelor)Part-time employment25United Kingdom415676757777656485755476665.8695652176.56755.3333333336651.50
11BMPCPotentialFemaleFirst degree (Bachelor)Full-time employment25United States61039475758425964475649456.256546.6666666679400
12PCFormerFemaleMasters degreeFull-time employment26Denmark1898298897989491687778387.91304347887.6666666677.58.3333333332.333333333381416
13PCPotentialFemaleMasters degreeStudent27United Kingdom7886108574897594885758177.04347826186.3333333334.5951700
14BMFormerFemaleMasters degreeOther27United Kingdom534787689997999592988779477.7391304358.257.66666666788.3333333334.3333333334753
15OtherFormerFemaleFirst degree (Bachelor)Full-time employment27United Kingdom274910969910991099310699101098098.7391304359.59.3333333339.595095246
16PotentialFemaleMasters degreeStudent28United Kingdom563658311225577552924954.0434782614424695
17BMPotentialFemaleMasters degreeFull-time employment28United Kingdom799675798878696975888687.0434782618.758.3333333337.5766800
18BMFormerFemaleFirst degree (Bachelor)Part-time employment29France03666478979676586477545676.2173913045.55.3333333339756742.50
19BMPCPotentialFemaleMasters degreeNot currently employed29United Kingdom038794979589910210601099994107.8260869576.257.6666666678.59.33333333344105090
20BMPCFormerMaleMasters degreePart-time employment30United Kingdom04777898788887574396977376.9130434786.2587.58.6666666675.66666666737126
21BMPCPotentialFemaleMasters degreeHomemaker30United Kingdom04767110866671086754106796876.82608695767.3333333336104875014
22PCPotentialFemaleFirst degree (Bachelor)Other30Greece02898299799799193101010101091108.8695652178.59.66666666789.33333333321105051
23BMPCFormerFemaleMasters degreeStudent30United Kingdom04686588686998464978866377.08695652287.333333333684.33333333337350
24OtherPotentialMaleMasters degreeStudent30United Kingdom88498999787858657101087087.3043478266.25987.3333333336.6666666670800
25PCFormerFemaleFirst degree (Bachelor)Full-time employment31United Kingdom124897788675887376996457276.8260869578.255.3333333335.58.3333333335.33333333327510
26BMPCFormerFemaleMasters degreeFull-time employment31Greece6535569977105696685992343655.7391304356.55.666666667696.66666666765530
27PCFormerFemaleMasters degreeFull-time employment31Czech Republic11817955677989894737479787777.58.3333333337.564775350
28OtherFormerFemaleFirst degree (Bachelor)Full-time employment32United Kingdom1888275656657573575877286.6521739136.756.66666666766.3333333333.333333333285151
29BMPCPotentialMaleMasters degreeOther35Denmark6693968978993813971098097.9130434786.59.3333333337.592.3333333330900
30BMPCPotentialFemaleMasters degreeFull-time employment35Denmark8886986810898596798665577.1739130437.756.666666667895.6666666675700
31PCPotentialFemaleLeft school at 16 (e.g. GCSE/O levels)Part-time employment35United Kingdom151798396878998272988999198.1739130438.758.33333333388.6666666672.333333333195088
32OtherPotentialMaleMasters degreeFull-time employment35United Kingdom8961998997883918108889088.3913043487.58.3333333338.591.6666666670800
33PCFormerFemaleTrade/technical/vocational qualificationFull-time employment36United Kingdom57887968878986867107988087.478260877.758.3333333337.59.3333333336.33333333308500
34PCFormerFemaleMasters degreeFull-time employment37United Kingdom0591010810885108886102109922101107.7826086969.53995.333333333110560
35PCFormerFemaleFirst degree (Bachelor)Other37United Kingdom034861298106507695700967565.7391304356.58.33333333370.666666667456400
36BMPCPotentialFemaleLeft school at 18 (e.g., A levels)Full-time employment37United Kingdom795987682965999575553845.217391304764798400
37BMPotentialFemaleDoctoral degreeStudent38United Kingdom9993999109978282989999198.65217391399.333333333982.3333333331900
38PCFormerFemaleDoctoral degreePart-time employment38United Kingdom04889291010910109929268109990108.9130434788.259108.66666666720103101
39OtherFormerMaleMasters degreeNot currently employed39Denmark86397919997109910010091091010100109.3043478268.599.59.3333333330.333333333010320
40PCFormerMaleFirst degree (Bachelor)Full-time employment40United Kingdom524887778788856673577667386.69565217476.6666666677.56.3333333335.333333333382321
41BMPCPotentialFemaleMasters degreeFull-time employment40United Kingdom7771988699883932107877777.3478260876.2578.592.3333333337700
42BMFormerFemaleMasters degreeNot currently employed42United Kingdom03797589788877583988978387.5652173918.2587.57.6666666674.33333333338227
43PCFormerFemaleMasters degreeFull-time employment42United Kingdom054525764022756564740121023.5652173913.250.333333333375.6666666671024220
44BMPCFormerFemaleFirst degree (Bachelor)Student44United Kingdom3248108888998985563989978277.60869565298.3333333338.585.333333333273105
45PCFormerFemaleFirst degree (Bachelor)Part-time employment44United Kingdom7056995989101089959189910910188.521739138.59.6666666679.593.666666667184630
46BMPCPotentialFemaleMasters degreeFull-time employment45United States788868828857997955055975.521739138.252.33333333385.33333333389700
47BMPCPotentialMaleFirst degree (Bachelor)Full-time employment46United Kingdom78828782897811011010101089098.3478260878.756.66666666788.3333333331.3333333330900
48BMPCPotentialFemaleTrade/technical/vocational qualificationFull-time employment47United Kingdom810837699998879278210108097.9130434788.59.66666666797.66666666740900
49PCPotentialMaleLeft school at 16 (e.g. GCSE/O levels)Not currently employed47United Kingdom81089109999910971059108888288.08695652298.33333333391072800
50OtherFormerFemaleDoctoral degreeFull-time employment49Australia9415928968888578928109887187.0869565226.7588861851325
51BMPCFormerMaleLeft school at 18 (e.g., A levels)Not currently employed51Lao People's Democratic Republic513686487766776776886456766.0869565227.2556.57.6666666675.66666666776110
52PCFormerMaleLeft school at 18 (e.g., A levels)Part-time employment51United Kingdom394897388898798392999988288.17391304388.66666666788.6666666672.666666667283278
53BMPCFormerMasters degreeFull-time employment53Australia599919101081010810610309101010100108.73913043579.333333333108.6666666673.3333333330105939
54BMFormerMaleFirst degree (Bachelor)Full-time employment53United Kingdom894888510789999999991099991097.5652173918.598.59.6666666677.66666666710955130
55PCPotentialFemaleFirst degree (Bachelor)Other54Denmark041010100710108101061011007410105100108.9565217399.257.666666667105.6666666670.3333333330105060
56OtherPotentialMaleLeft school at 16 (e.g. GCSE/O levels)Full-time employment54United Kingdom1911052241121108108519111012.7391304354.754.6666666671.541010100
57PCPotentialFemaleTrade/technical/vocational qualificationPart-time employment54United Kingdom88811078688982877991099098.1739130437.758.33333333389.3333333333.3333333330900
58BMPCPotentialFemaleMasters degreeStudent55United States5639992109101010101010292910101010101109.4347826099.2510101021105022
59OtherPotentialFemaleMasters degreeFull-time employment55Denmark77911088999982918107988198.521739138.258.6666666678.59.6666666671.3333333331900
60PotentialMaleTrade/technical/vocational qualificationFull-time employment56United Kingdom655476766686565597766886.0869565225.256.3333333336.584.66666666788
61PCPotentialMaleTrade/technical/vocational qualificationRetired56United Kingdom605577276657836381752988286.6956521747.257.3333333336.552284015
62BMPCPotentialFemaleTrade/technical/vocational qualificationFull-time employment58United Kingdom121844482143788974863334.1739130433.257.333333333357.6666666673300
63BMFormerMaleMasters degreeRetired58United Kingdom132295903567804912907424833.9565217397.754606.6666666678351028
64PCPotentialMaleMasters degreePart-time employment59United Kingdom675776656776765485566555.6086956525.755.33333333367.3333333336.3333333335500
65BMFormerFemaleTrade/technical/vocational qualificationFull-time employment59United Kingdom911777176727788581787747176.95652173974.33333333377.6666666672.33333333317120
66BMPCFormerMaleTrade/technical/vocational qualificationFull-time employment59United Kingdom114499829810699881101109101089198.826086957989.58.6666666671.3333333331951060
67BMPCPotentialFemaleLeft school at 16 (e.g. GCSE/O levels)Other59United Kingdom704588356798847383967998387.2608695658.2597.5533850120
68BMFormerMaleTrade/technical/vocational qualificationFull-time employment59United Kingdom4709991999991099391791010990998.759.333333333991.6666666670953021
69OtherFormerMaleTrade/technical/vocational qualificationRetired60United Kingdom993997669999978795778867587.30434782687.66666666796.66666666765853334
70BMFormerMaleFirst degree (Bachelor)Retired60United Kingdom891710218798102981710987810097.6086956523.57.6666666679.58.66666666710953237
71BMPCPotentialMaleFirst degree (Bachelor)Part-time employment61United Kingdom664655565545555655666565.2173913045.25654.6666666675.3333333335600
72BMFormerMaleFirst degree (Bachelor)Part-time employment62United Kingdom91077848510910978271081099101107.95652173969107.6666666672.3333333331101544
73OtherPotentialFemaleFirst degree (Bachelor)Retired62United Kingdom02888689999999192799888088.34782608788.33333333398.6666666673085028
74PCFormerMaleTrade/technical/vocational qualificationRetired62United Kingdom4139973887777782102987878087.91304347887.33333333377.6666666672.3333333330832810
75BMPCFormerMaleLeft school at 16 (e.g. GCSE/O levels)Full-time employment62United Kingdom18410101019101010101091028271099990109.3043478269.259.333333333109.3333333331.66666666701054242
76BMPotentialFemaleMasters degreeRetired63United Kingdom6551076658674446464443544.91304347854.33333333376.6666666676.6666666675400
77BMPCFormerFemaleLeft school at 16 (e.g. GCSE/O levels)Full-time employment64United Kingdom1039991991010109991918101091010199.2608695658.759.666666667109.33333333311951228
78BMPCPotentialMaleTrade/technical/vocational qualificationFull-time employment64United Kingdom668137897728581636757276.5652173916.7577.52.6666666672.3333333332700
79OtherFormerFemaleFirst degree (Bachelor)Retired64United Kingdom0444338544446393545777565.478260874.2564.53.6666666673564116
80BMFormerMaleMasters degreeFull-time employment64United Kingdom60551029678598347971075553255.6956521747.558.55.3333333337.6666666672541848
81BMFormerFemaleDoctoral degreeRetired65United Kingdom81175366757877581788778186.8260869576.756.3333333337731857
82BMFormerFemaleFirst degree (Bachelor)Retired65United Kingdom910472854414745749555112913.3913043485.25144.6666666678911561
83OtherPotentialFemaleLeft school at 16 (e.g. GCSE/O levels)Retired65United Kingdom2576565636646587555546555.26086956564655.666666667554040
84PCFormerMaleTrade/technical/vocational qualificationRetired65United Kingdom704785110888858951026107869187.78260869667.33333333389.3333333332.666666667185944
85PCFormerFemaleDoctoral degreeRetired65United States661888197878898492588988297.9565217397.25888.6666666672.333333333295529
86BMPCFormerMaleFirst degree (Bachelor)Retired65United Kingdom604555655554447683464856465.3043478264.564.555463106
87PCFormerMaleFirst degree (Bachelor)Retired66United Kingdom911587296684109721038107679577.4347826098.25759.3333333332.33333333357239
88PCFormerMaleTrade/technical/vocational qualificationRetired66United Kingdom266905778885909095897100108.043478261887.55001051526
89OtherFormerFemaleLeft school at 16 (e.g. GCSE/O levels)Retired66United Kingdom700810757888892911021058998187.91304347898.66666666784.6666666672.666666667185230
90BMPCFormerMaleTrade/technical/vocational qualificationRetired66United Kingdom894999288910988939110891099098.82608695799.666666667982095856
91BMFormerMaleMasters degreeRetired66United Kingdom895572777687774386985875066.3913043486.257.6666666676.57.3333333335.33333333306373
92BMPCFormerMaleTrade/technical/vocational qualificationRetired66United Kingdom11758981689798482100879688198.0434782618.25795.6666666671195139
93PCFormerMaleMasters degreeRetired66United Kingdom6038983889910988493689989098.30434782688.6666666679.583.3333333330951230
94PotentialMaleLeft school at 16 (e.g. GCSE/O levels)Retired67United Kingdom575867727756775756545555.3478260876.53.66666666775.3333333336.66666666755
95OtherFormerMaleTrade/technical/vocational qualificationRetired67United Kingdom1748991789109988292899998888.2608695658.759.333333333981.666666667885935
96BMPCPotentialMaleLeft school at 16 (e.g. GCSE/O levels)Retired67United Kingdom9862101010104793110021088291107.8695652175.756.66666666779.666666667111000
97OtherPotentialMaleTrade/technical/vocational qualificationRetired67United Kingdom702786677777777575787877586.73913043577.33333333377.3333333335.333333333585048
98OtherPotentialMaleFirst degree (Bachelor)Retired67United Kingdom789487876868392776878087.5217391387.3333333337730800
99OtherFormerFemaleFirst degree (Bachelor)Retired68United Kingdom1795767676856677675555855.60869565275.666666667666.666666667855664
100PCFormerFemaleFirst degree (Bachelor)Retired68United Kingdom0571077898978881104995687987.3913043488.57.6666666677.58.333333333498226
101BMFormerMaleFirst degree (Bachelor)Retired68United Kingdom795979378798866591693778187.4347826097.57.6666666677.57.333333333318314166
102OtherFormerMaleMasters degreeRetired69United Kingdom007871277107726394737998097.0869565227.259.33333333372.3333333332.6666666670951220
103BMFormerFemaleDoctoral degreeRetired70United Kingdom49109279105998921011089999098.7826086969.57.6666666679.57.6666666671.66666666709500
104BMPCFormerMaleFirst degree (Bachelor)Retired70United Kingdom1023776566766676472677777276.6086956526.256.6666666676.56.6666666673.6666666672735413
105OtherFormerMaleFirst degree (Bachelor)Retired70United Kingdom95578747898997961069810999098.0434782618.258.66666666797.3333333335.3333333330952227
106BMPotentialMaleMasters degreeRetired71United Kingdom577367787766582877877786.7826086967.257.66666666776.3333333333.3333333337800
107PCFormerMaleTrade/technical/vocational qualificationRetired71United Kingdom704686357788856784766887266.6956521747.2587.55.3333333334.666666667265730
108PCFormerFemaleMasters degreeRetired71United Kingdom1085101010110101010101010101101810101010100109.7826086969.5101010101051565
109OtherFormerMaleTrade/technical/vocational qualificationRetired71United Kingdom78268581108877989881555766.752.333333333987575642
110PCFormerMaleFirst degree (Bachelor)Retired71United Kingdom49974391099828996839788287.043478261889.52.6666666676.3333333332851821
111BMPotentialFemaleFirst degree (Bachelor)Retired72United Kingdom03778488887888684888999397.6521739137.758.6666666677.584.666666667395052
112BMPCFormerFemaleFirst degree (Bachelor)Retired73United Kingdom7571091106109910109191710101010100109.21739130499.6666666679.51010103420
113PCFormerMaleMasters degreeRetired73United Kingdom605778310888881083825108688187.91304347877.3333333338102.6666666671851052
114OtherPotentialFemaleLeft school at 18 (e.g., A levels)Retired74United Kingdom7009910189919979191089979098.08695652275.66666666797.6666666671095072
115PCFormerMaleTrade/technical/vocational qualificationRetired74United Kingdom047982878788891811077878088.0869565228.757.33333333387.6666666671.3333333330855260
116OtherFormerMaleFirst degree (Bachelor)Retired75United Kingdom81787186888868482888888287.6956521747.75887.3333333332.3333333332851433
117OtherFormerFemaleTrade/technical/vocational qualificationOther75United Kingdom580777287999988191999999098.521739138998.3333333331.333333333095310
118BMPCFormerMaleMasters degreeRetired77United Kingdom81797210876881082918108779088.21739130486.6666666677.5101.6666666670852020
119BMPCFormerMaleTrade/technical/vocational qualificationRetired77United Kingdom974212983594583749593882124.5652173913.258.3333333334.58.3333333338.3333333331251428
120BMFormerMaleTrade/technical/vocational qualificationRetired80United Kingdom031010101410910101091019010799109798.913043478109.6666666679.56.6666666670.66666666779560
121PotentialLeft school at 16 (e.g. GCSE/O levels)Retired80United Kingdom10108010710610101010410181010777098.86956521796.66666666710101.66666666709
122OtherFormerMaleTrade/technical/vocational qualificationRetired83United Kingdom04889398868698494989878197.9130434788788.6666666673.66666666719516.548
123OtherFormerMaleLeft school at 16 (e.g. GCSE/O levels)Retired94United Kingdom851566155787857262877898287.08695652278.33333333375.6666666671.666666667283228
124BMPCPotentialMaleMasters degreeStudentUnited Kingdom868687868877575878869786.9130434787.56.66666666787.3333333335.3333333337800
125PotentialFemaleFirst degree (Bachelor)Full-time employmentUnited Kingdom687487878878872875647776.6086956527.755.66666666787.3333333334.66666666777
126PCCurrentFemaleLeft school at 18 (e.g., A levels)Student18United Kingdom3337895989101010109483798910102108.521739138.59.6666666679.59.333333333421057155
127BMPCCurrentFemaleFirst degree (Bachelor)Student19United Kingdom5348991108887910917091097710098.73913043597.3333333337.5100.6666666670952.575
128PCCurrentFemaleLeft school at 18 (e.g., A levels)Student19United Kingdom02568266687968171576786187.13043478377.6666666676.56.3333333331.333333333185950
129BMCurrentMaleLeft school at 18 (e.g., A levels)Student19Canada34710867810891077381959910101108.2608695659.2599.56.3333333333.33333333311000
130BMPCCurrentFemaleFirst degree (Bachelor)Student20United Kingdom391091981010101091021002881010100897.7510108.6666666671085867
131OtherCurrentMaleFirst degree (Bachelor)Student21Canada08910389109996878810610999098.1304347839.599.56.666666667609520
132PCCurrentFemaleFirst degree (Bachelor)Part-time employment22United Kingdom681888266677767282666667276.9565217397.256.3333333336.5622741
133BMCurrentMaleFirst degree (Bachelor)Full-time employment22United Kingdom2778377777788881688888187.34782608777.66666666777.666666667418200
134BMPCCurrentMaleMasters degreeFull-time employment23United Kingdom457788999101010892729977782888.589.58.6666666674283123
135BMCurrentMaleFirst degree (Bachelor)Other23United Kingdom1589901088988109190788988098.7391304358.258.66666666789.3333333330.333333333093368
136OtherCurrentFemaleMasters degreeNot currently employed24Greece11527108878101010107103849761010100108.3478260879.25101075010440
137BMCurrentFemaleMasters degreeFull-time employment25United Kingdom174687573486777481676777176.69565217477.333333333573.33333333317122
138BMCurrentFemaleMasters degreeStudent25United Kingdom11378931079910109939088889100108.7391304358.758.6666666679.592010225
139BMPCCurrentFemaleDoctoral degreeStudent25United Kingdom89599109101091010101010910191010109109108.5652173919.59.6666666679.5106.3333333339105610
140OtherCurrentFemaleFirst degree (Bachelor)Not currently employed25United States62478728810791089291688798288.1304347837.757.6666666679.581.66666666728285
141PCCurrentFemaleMasters degreeFull-time employment25Denmark234566256688778170756887097.2173913046.5875.6666666671092414
142BMCurrentMaleMasters degreeFull-time employment27United Kingdom107561085757991078210087989509898.666666667872.333333333093310
143BMPCCurrentFemaleFirst degree (Bachelor)Part-time employment27United Kingdom87510109299109101099392979910102109.0434782619.59.333333333108.3333333332.3333333332103215
144BMPCCurrentMaleLeft school at 18 (e.g., A levels)Student27United Kingdom7047961810101010108819098109107088.8695652178.59.6666666671080.6666666670812
145BMCurrentMaleMasters degreeStudent28United Kingdom4675755777856463652666555.6956521746.56.333333333754.66666666755157
146BMCurrentMaleFirst degree (Bachelor)Full-time employment28United Kingdom1063787277778878381777878187.5652173917.57.3333333337.572182128
147OtherCurrentFemaleMasters degreeFull-time employment28United Kingdom1000828178999989281577999098.0434782616997.3333333331.33333333309200
148PCCurrentFemaleFirst degree (Bachelor)Full-time employment28United Kingdom4156881877677874801086788597.521739138.257781.666666667594120
149PCCurrentFemaleMasters degreeFull-time employment29United Kingdom0548801005344107500783565076.0434782616.754.6666666674.59.3333333331.66666666707400
150BMCurrentFemaleMasters degreePart-time employment30United Kingdom11458109186999108921018891010100108.9565217399.259.666666667981.33333333301000
151BMPCCurrentFemaleFirst degree (Bachelor)Not currently employed30United Kingdom1141677657788857586616689596.34782608777.3333333337.53.6666666675.666666667592120
152PCCurrentMaleFirst degree (Bachelor)Part-time employment30United Kingdom57865108999810829061095109088.304347826789102.333333333083124
153BMCurrentFemaleMasters degreeStudent31United Kingdom4928884771091010883815710101091108.3913043487.759.666666667107.3333333332.66666666711051415.3
154OtherCurrentFemaleMasters degreeFull-time employment31United Kingdom544100657777670607677770107.26086956577760010121.5
155PCCurrentFemaleMasters degreeStudent31Greece651787577777677574577777376.6956521746.57774.6666666673751
156OtherCurrentFemaleMasters degreeStudent31United Kingdom2746457555576381677568186.4347826095.255.33333333356.3333333332.6666666671831612
157BMPCCurrentFemaleDoctoral degreeFull-time employment32United Kingdom911788285859888181567779187.5652173917.256.3333333338.57.3333333331.33333333318284
158OtherCurrentMaleTrade/technical/vocational qualificationPart-time employment32United Kingdom388811089889109291110101010101108.6956521746.59.3333333338.5101.3333333331105245
159BMPCCurrentFemaleMasters degreeStudent33United Kingdom6128873888899983101779999198.3043478267.758.6666666678.582.33333333319386.5
160BMPCCurrentFemaleMasters degreeFull-time employment33United States94798575757767282767777376.9130434787.756.33333333376.333333333337520
161BMPCCurrentFemaleMasters degreeFull-time employment33United Kingdom05699187797888491787998088.0434782618.25978208523.1
162PCCurrentFemaleFirst degree (Bachelor)Part-time employment34United Kingdom4531010100981081088778189109680108.60869565297.666666667108.6666666672.6666666670103312
163OtherCurrentMaleTrade/technical/vocational qualificationNot currently employed34United Kingdom5009692107101098106391710108109068.5652173917.59.3333333339.51020652.515
164BMCurrentMaleMasters degreeFull-time employment34United Kingdom161450473487676924576660324.82608695746.6666666675.575.666666667325814.5
165OtherCurrentFemaleMasters degreeFull-time employment35United Kingdom5705880869910997793789688057.73913043587.6666666679.58.3333333333.333333333053110
166BMPCCurrentFemaleFirst degree (Bachelor)Part-time employment35United Kingdom04998289899998291999899198.6956521748.758.6666666678.58.6666666671.6666666671900
167BMPCCurrentFemaleDoctoral degreePart-time employment35United States1124598527737726896024613934.4782608763.333333333726.333333333931200
168BMCurrentMaleFirst degree (Bachelor)Part-time employment35United Kingdom119982579781059461757888187.6086956528.57.6666666678.552.333333333185864
169BMCurrentMaleMasters degreeNot currently employed35United Kingdom126882878107998592887958097.9130434788.2587.58.3333333333095850
170BMPCCurrentMaleFirst degree (Bachelor)Full-time employment35United States03910101981010101099190999910101109.3913043489.759.6666666671090.666666667110510170
171PCCurrentMaleMasters degreeNot currently employed35United Kingdom39578901010101010109108100108101010100109.2608695659.25101092.6666666670102132
172PCCurrentMaleLeft school at 18 (e.g., A levels)Part-time employment36United Kingdom151010100108101010101010010081010810100109.7391304359.59.333333333101000103619
173BMCurrentFemaleMasters degreePart-time employment36United Kingdom531678677868876666834455376.0434782617.75585.66666666763751534
174BMCurrentFemaleMasters degreeStudent36United Kingdom04998178988979180688888188.260869565888.57.3333333330.666666667183205
175BMPCCurrentFemaleMasters degreeHomemaker36United Kingdom05685856917756867852126754.78260869671.333333333857.66666666775200
176BMCurrentFemaleMasters degreeFull-time employment37United Kingdom305889088888888080886888088.3043478268.25888008226
177PCCurrentMaleMasters degreeStudent37United Kingdom194686275878878171686778287.3478260877787.3333333331.33333333328154
178BMCurrentFemaleFirst degree (Bachelor)Full-time employment38Australia5181095577888596751047977277.1304347839.2587.54.6666666675.333333333275260
179OtherCurrentFemaleMasters degreeNot currently employed38United Kingdom921476263676716684702646365.3478260876.755.66666666762.3333333334365414
180BMPCCurrentFemaleMasters degreePart-time employment38Italy3437885789791077382597978087.7391304357.757.66666666797.6666666673.3333333330851
181OtherCurrentFemaleFirst degree (Bachelor)Full-time employment39Denmark932646257777666263456677266.30434782656.66666666775.3333333332.3333333332641510
182BMCurrentFemaleFirst degree (Bachelor)Full-time employment39United Kingdom8813613801028683889488545165.3043478264.253.666666667986.66666666716568.05
183BMPCCurrentFemaleFirst degree (Bachelor)Part-time employment40United Kingdom4158880789101087801008888108088.65217391389.3333333339.57.3333333330085319
184OtherCurrentMaleLeft school at 16 (e.g. GCSE/O levels)Not currently employed41United Kingdom5047674889109688791558978587.30434782668.6666666679745851.530
185BMCurrentFemaleDoctoral degreeFull-time employment43United Kingdom14587104857710108858088787901088.757.3333333338.583010343
186PCCurrentFemaleLeft school at 18 (e.g., A levels)Full-time employment43United Kingdom352576656645757685667555165.7826086966.54.6666666675.55.3333333335.666666667164480
187BMCurrentFemaleMasters degreePart-time employment44United Kingdom321655577777676353577777276.478260875.257773.66666666727300
188OtherCurrentFemaleFirst degree (Bachelor)Full-time employment44United Kingdom7009992101010101010109110010891010100109.5652173919.510109.33333333310103112
189BMCurrentFemaleFirst degree (Bachelor)Full-time employment44United Kingdom285678276758878280645577676.7826086967.255.6666666677.561.33333333367416
190PCCurrentFemaleMasters degreeFull-time employment44United Kingdom3957101021081091010109110081098890109.2173913049.58.333333333101010104435
191BMCurrentFemaleLeft school at 18 (e.g., A levels)Part-time employment44United Kingdom9259995889999108196988999078.3913043489998.6666666674075220
192BMPCCurrentFemaleLeft school at 16 (e.g. GCSE/O levels)Part-time employment45United Kingdom111388956591091068581858899097.8695652178.75995.6666666673.666666667095545
193BMPCCurrentMaleMasters degreeHomemaker45United Kingdom414108100101010101010101001001010101010100109.9130434789.5101010001033027
194OtherCurrentMaleTrade/technical/vocational qualificationFull-time employment47United Kingdom9837898787889686613596891107.1739130437.257.3333333337.565110530
195PCCurrentFemaleFirst degree (Bachelor)Full-time employment47United Kingdom481568156688868494758888087.2173913047.25875.333333333308151
196BMPCCurrentMaleTrade/technical/vocational qualificationFull-time employment47United Kingdom825897188899988181899789198.4347826098.2588.58.33333333311931030
197PCCurrentFemaleFirst degree (Bachelor)Other47United Kingdom4137971968699972101293666467.2173913046.7568.591.33333333346320
198BMCurrentFemaleMasters degreeFull-time employment48United Kingdom5356105357888967473958677676.9130434788.25785.3333333333.333333333673825
199PCCurrentFemaleDoctoral degreePart-time employment48Canada291910815810710557383858485557.0869565227.756.3333333331052.333333333555345
This is a portion of the data; to view all the data, please download the file.
Dataset 2.Raw data from study 2, the online volunteer survey.

Study 3: How do volunteer managers perceive the effect of volunteering on the well-being of their volunteers?

Deriving the perceived well-being factors. Exploratory factor analysis performed on the volunteer manager data identified a four-factor model; however, fit indices indicated only marginal fit (RMSEA = 0.09 [90% CI = 0.053; 0.102], TLI = 0.91). CFA based on the four-factor model revealed bad fit (RMSEA = 0.111 [90% CI = 0.089, 0.133], SRMR = 0.097, CFI = 0.880, TLI = 0.850). CFA based on the model from the self-reported well-being sample, but excluding the ‘health’ factor as there was only one item on health in the volunteer manager questionnaire, indicated acceptable fit based on CFI (0.929), TLI (0.902) and SRMR (0.066), though RMSEA (0.100 [90% CI = 0.069, 0.130]) was high. The four-factor model from the self-reported well-being sample had significantly better fit than the model developed from the volunteer manager EFA (Δχ2(36) = 90; p<0.001), the original PERMA-P model (without the ‘health’ factor) (Δχ2(72) = 223, p<0.001) or a generic one-factor model (Δχ2(6) = 146; p<0.001) and it was therefore used for exploring perceived well-being further. Factor correlations based on the volunteer manager sample are summarised in Table 8.

Table 8. Final well-being factors, descriptive statistics and correlations for volunteer manager sample.

Final well-being factors (‘engagement’, ‘relationship’, ‘meaning’, ‘negative emotion’, 0–10 scale), descriptive statistics and correlations for volunteer manager sample (n=94–96, * p<0.05, **p<0.001). MV Time, manager time spent with volunteers (1–6 scale, 6 being 100%); MPS, mean perceived well-being score from all items; Education, 1–6 scale, 6 being doctorate degree.

VariableMeanSDMV TimeEducationMPSEngagementRelationshipMeaning
MV Time2.661.231.00
Education4.101.14-0.201.00
MPS7.651.010.25*-0.201.00
Engagement7.531.370.21*-0.160.81**1.00
Relationship8.021.350.22*-0.190.86**0.59**1.00
Meaning8.411.150.22*-0.120.70**0.56**0.67**1.00
Negative2.791.60-0.060.07-0.54**-0.19-0.37**-0.08

External factors and perceived well-being. Stepwise multiple regression reduced the model for predicting the overall mean perceived well-being score to only include the significant variable of manager time spent with volunteers (measured on 1–6 scale, 6 being 100%; p<0.05) and the important variable of managers’ level of education (measured on 1–6 scale, 6 being doctoral degree; p<0.07) as important factors (F2,91 = 4.93; R2adj = 0.08; p<0.01). Manager time spent with volunteers was significantly positively correlated with the overall mean perceived well-being score, as well as with the perceived ‘engagement’, ‘relationship’ and ‘meaning’ elements (Table 8).

How do volunteer managers perceive the effect of volunteering on the well-being of their volunteers? Volunteer managers in different types of volunteering rated the well-being of their volunteers similarly, except for ‘health’ where managers in biodiversity monitoring also doing practical conservation rated their volunteers’ ‘health’ higher than managers in non-environmental volunteering (Dunn’s test; z = 2.69; p<0.05) (Figure 8).

78972e2d-f911-486a-92bc-821a1656e881_figure8.gif

Figure 8. Volunteer managers’ perception of the well-being of their volunteers.

The perceived well-being of volunteers by different types of volunteer managers (mean score ±SE bars). Significant difference found only for Health (Kruskal-Wallis test; χ2(3) = 7.63; *p=0.05). ‘Engagement’, ‘relationship’, ‘meaning’ and ‘negative emotion’ factor scores were means of factor item aggregates. ‘Health’, ‘loneliness’ and ‘happiness’ were single item measures. BMPC, biodiversity monitoring volunteers also doing practical conservation work.

Response_IDtypeperiodgendervmeduvmemployvmagevmcountryvmorgvmvoltimeorgvmp1_joyfvmp2_posivmp3_contvme1_absovme2_excivme3_timevmr1_suppvmr2_apprvmr3_sativmm1_purpvmm2_wortvmm3_direvma1_progvma2_achivma3_respvmn1_anxivmn2_frusvmn3_sadvmh2_sativmhappvmlonevmEngvmRelvmMeavmNegvmHeavm_WB
3PCcurMaleFirst degree (Bachelor)Full-time employment42United Kingdom058897776987776664424927.257.66666666773.33333333347.095238095
4BMcurFemaleMasters degreeFull-time employment30United Kingdom9487958789888676722069078.33333333381.33333333367.714285714
5BMcurMaleMasters degreeFull-time employment33United Kingdom5529978986659968762725928.55.66666666793.66666666757.285714286
6BMcurMaleFirst degree (Bachelor)Full-time employment40United Kingdom8298671059887984691307807.758.33333333381.33333333377.80952381
7OtherformerFemaleFirst degree (Bachelor)Part-time employment39United Kingdom811091099910109101010991027361029.259.66666666710468.80952381
8BMPCcurFemaleMasters degreePart-time employment43United Kingdom828810810810108101099885424918.59.333333333103.66666666748.333333333
9PCcurMaleLeft school at 16 (e.g. GCSE/O levels)Retired68United Kingdom4139981097910891098975517938.7599.53.66666666778.238095238
11BMPCformerFemaleFirst degree (Bachelor)Other55United Kingdom1038789959889986858555857.758.3333333339656.952380952
13BMcurFemaleMasters degreeFull-time employment24United Kingdom2028888999887878770408808.58.3333333337.51.33333333388.142857143
16BMcurFemaleLeft school at 18 (e.g., A levels)Part-time employment40United Kingdom4747677767767776772317726.756.6666666677277
22PCformerFemaleMasters degreeFull-time employment27United Kingdom037788878888887776626827.5884.66666666767.238095238
24BMPCformerMaleFirst degree (Bachelor)Full-time employment39United Kingdom024797847887886771306915.757.6666666677.51.33333333367.380952381
25BMPCcurFemaleFirst degree (Bachelor)Full-time employment24United Kingdom4748876847889864456627746.57.6666666678.54.66666666776.476190476
26PCcurFemaleLeft school at 16 (e.g. GCSE/O levels)Retired67United Kingdom373899109799981098584119928.599298.428571429
27BMPCcurFemaleDoctoral degreeFull-time employment41United Kingdom6117667767667767767335626.756.33333333374.33333333356.380952381
34PCcurFemaleLeft school at 18 (e.g., A levels)Student19United Kingdom1845776557877776672325815.257.33333333372.33333333356.761904762
39PCcurFemaleLeft school at 16 (e.g. GCSE/O levels)Retired65United Kingdom028687918997896734336966.258.6666666677.53.33333333366.857142857
41BMPCcurFemaleDoctoral degreeFull-time employment36United Kingdom39210910101010998910109999209109108.6666666679.53.66666666798.571428571
42PCcurMaleFirst degree (Bachelor)Retired57United Kingdom36410799989999999882718919993.33333333388.428571429
43BMPCcurFemaleFirst degree (Bachelor)Full-time employment50United Kingdom20599999610991010988101118918.259.33333333310188.904761905
46PCcurFemaleMasters degreePart-time employment31United Kingdom1717877787777776782355717.25773.33333333357.047619048
47PCcurFemaleFirst degree (Bachelor)Full-time employment36United Kingdom1739999998899109981022179198.3333333339.51.66666666778.761904762
48PCcurFemaleFirst degree (Bachelor)Full-time employment41United Kingdom1737887887886866562219837.57.66666666771.66666666797.380952381
49BMcurFemaleTrade/technical/vocational qualificationFull-time employment62United Kingdom17599910109910991097892219909.59.3333333339.51.66666666799
52PCcurMaleTrade/technical/vocational qualificationRetired73United Kingdom3538798989998987682425828.2598.52.66666666757.857142857
53PCcurFemaleLeft school at 18 (e.g., A levels)Full-time employment54United Kingdom35510999979979979971458968.758.33333333393.33333333388.047619048
54BMcurMaleFirst degree (Bachelor)Other71United Kingdom35388799697789698883256787.6666666678.54.33333333357.095238095
55BMcurMaleFirst degree (Bachelor)Retired67United Kingdom3548878867887767682427827.57.66666666772.66666666777.333333333
57BMPCcurFemaleTrade/technical/vocational qualificationPart-time employment58United Kingdom63789109999991099881206908.7599.5168.761904762
63PCcurFemaleMasters degreeFull-time employment39United States016765787677566676545756.56.6666666676556.095238095
66BMcurFemaleDoctoral degreeFull-time employment33United States3406752746555625381205524.755.3333333335.5155.761904762
68BMPCcurFemaleFirst degree (Bachelor)Full-time employment34Greece3129101091091010689999762191069.258.6666666678.5398.476190476
69BMPCcurFemaleFirst degree (Bachelor)Full-time employment30Cabo Verde2836538573225556726586386.52.33333333356.33333333364.428571429
72BMPCformerFemaleDoctoral degreeFull-time employment40United States088987799999910980225917.5991.33333333358.428571429
73BMPCcurFemaleLeft school at 18 (e.g., A levels)Full-time employment44Costa Rica26189981091010991089784518908.759.6666666679.53.33333333388.571428571
74PCcurMaleFirst degree (Bachelor)Full-time employment32United States6239109101089810810899975310939.25995108.428571429
75BMPCformerFemaleFirst degree (Bachelor)Homemaker43United States449999107888101099981219928.758101.33333333398.761904762
76BMPCcurFemaleMasters degreeFull-time employment34Mozambique231099998999888997342992998398.428571429
77OtherformerMaleFirst degree (Bachelor)Full-time employment26United Kingdom518799109786787985231580977.5257.80952381
78BMPCformerFemaleFirst degree (Bachelor)Full-time employment39United Kingdom033897696987686773407906.257.6666666676.52.33333333377.380952381
82OthercurFemaleFirst degree (Bachelor)Other30United Kingdom24215444324198667298951832.3333333338.58.66666666753.714285714
83BMPCcurFemaleMasters degreeStudent32United States32175278277988865766762467.66666666786.33333333365.761904762
84BMPCcurMaleFirst degree (Bachelor)Full-time employment41United States0289678397789677102219816.57.6666666678.51.66666666797.714285714
85BMcurMaleFirst degree (Bachelor)Other54Canada7199107109910989878900091008.759.3333333338.5099.047619048
87BMPCcurFemaleFirst degree (Bachelor)Full-time employment23United States4031010109981010910109101091001010099.666666667100.333333333109.619047619
88PCcurFemaleMasters degreeFull-time employment50Isle of Man0488978989999882711059088.66666666790.66666666758.095238095
91BMcurFemaleFirst degree (Bachelor)Full-time employment33United Kingdom58399999899991099991117918.7599.5178.904761905
92OthercurFemaleTrade/technical/vocational qualificationPart-time employment49United Kingdom532888977910881098782314807.7599248.095238095
94OthercurMaleFirst degree (Bachelor)Full-time employment48United Kingdom424998910510109101098968442918.259.666666667105.33333333327.857142857
95BMPCformerFemaleFirst degree (Bachelor)Part-time employmentUnited Kingdom3839109997910999994411051008.59.33333333390.66666666758.476190476
99BMPCcurFemaleMasters degreeFull-time employment37United States2338778737777777774536736.577466.714285714
100PCcurMaleMasters degreeFull-time employment41United Kingdom4328889858998868882317827.58.6666666678277.857142857
101OthercurFemaleFirst degree (Bachelor)Full-time employment38United Kingdom603101010101081010101010101010100100101009.510103.333333333109.428571429
105PCcurMaleTrade/technical/vocational qualificationFull-time employment60United Kingdom03710107103910109108888060101006.759.6666666679.52108.619047619
107OthercurMaleMasters degreePart-time employment53United Kingdom2244777528778877872725624.57.33333333383.66666666756.523809524
108PCcurFemaleDoctoral degreeFull-time employment33United Kingdom57288889710106910798732178188.6666666679.5278.19047619
109PCcurFemaleLeft school at 18 (e.g., A levels)Full-time employment28United Kingdom0398999999789788831169298.3333333338.51.66666666768.285714286
110BMPCformerFemaleFirst degree (Bachelor)Full-time employment36United Kingdom332999999910999987711259199.33333333391.33333333358.571428571
119OthercurMaleFirst degree (Bachelor)Full-time employment54United Kingdom5637777859779968694257756.757.66666666793.66666666777.095238095
120OthercurFemaleFirst degree (Bachelor)Full-time employment37United Kingdom4915788448888886673750625.2588506.285714286
122OthercurFemaleDoctoral degreeFull-time employment60United Kingdom48277387684488678777665075.33333333386.66666666766.142857143
125PCformerFemaleMasters degreeFull-time employment29United Kingdom1559889969889978883417838.258.33333333392.66666666777.952380952
127BMPCcurMaleTrade/technical/vocational qualificationFull-time employment51United Kingdom1119998109998910777725189198.6666666679.52.66666666788.333333333
130OthercurFemaleFirst degree (Bachelor)Full-time employment26United Kingdom2716676747766767655427725.756.6666666676.53.66666666776.380952381
131OthercurFemaleTrade/technical/vocational qualificationFull-time employment51United Kingdom2137889809877887773411071687.52.666666667107.428571429
135BMPCcurFemaleMasters degreeFull-time employment45United Kingdom29188587187577777512035066.6666666677136.761904762
136OthercurFemaleFirst degree (Bachelor)Full-time employment38United Kingdom19487899910108101099896775728.759.333333333106.66666666757.761904762
145BMPCformerMaleMasters degreeFull-time employment41United Kingdom2516989919108101087781818906.259103.33333333387.904761905
148PCcurMaleFirst degree (Bachelor)Full-time employment42United Kingdom1227888939889978981224816.758.33333333391.66666666747.80952381
153BMPCcurMaleFirst degree (Bachelor)Full-time employment40Guatemala139898105898910997913598188.3333333339.5398.285714286
154BMcurMaleDoctoral degreeRetired71Australia1310999106101098986771314908.759.6666666678.51.66666666748.333333333
155OthercurFemaleMasters degreeFull-time employment26United Kingdom45391099989881091089752271038.758.3333333339.5378.428571429
158OthercurFemaleMasters degreePart-time employment51United Kingdom5438888858888866661515817.25882.33333333357.333333333
160OthercurFemaleMasters degreeFull-time employment53United States59589989789989988812059188.6666666678.5158.380952381
163PCcurMaleMasters degreeFull-time employment44United Kingdom1118789777868875573338827.7578387.238095238
167BMPCcurMaleFirst degree (Bachelor)Full-time employment52United Kingdom048898879978998892229927.758.3333333338.5298.285714286
169BMPCformerMaleFirst degree (Bachelor)Full-time employment40United Kingdom1138778878788878786638737.757.6666666678587.19047619
170BMPCcurFemaleFirst degree (Bachelor)Full-time employment37United Kingdom0281097971099910752101407917.759.3333333339.51.66666666778.142857143
172BMcurMaleFirst degree (Bachelor)Retired74United Kingdom4615777766777866781659716.256.6666666677.5496.857142857
176BMcurMaleFirst degree (Bachelor)Full-time employment33United Kingdom017778757777778773335726.7577356.952380952
177BMPCcurMaleTrade/technical/vocational qualificationFull-time employment25United Kingdom5238888796875777591517808762.33333333377.476190476
181BMcurFemaleMasters degreeFull-time employment37United States3039998989999989895738938.599588.095238095
182BMcurFemaleFirst degree (Bachelor)Full-time employment39United Kingdom46149768398889763101434715.258.3333333338.52.66666666747
184BMPCcurMaleFirst degree (Bachelor)Full-time employment40United Kingdom1417987787988876591218817.25881.33333333387.80952381
186BMcurMaleMasters degreeFull-time employment31United Kingdom502799810710991010888822259089.33333333310258.476190476
188OthercurFemaleFirst degree (Bachelor)Full-time employment34United Kingdom02999996999101099982315918.25910258.571428571
189BMPCcurMaleTrade/technical/vocational qualificationPart-time employment56United Kingdom4618778779558958880204817.56.3333333338.50.66666666747.523809524
191BMcurMaleFirst degree (Bachelor)Full-time employment35United Kingdom318778776657767572325757.55.66666666772.33333333356.666666667
192PCcurMaleLeft school at 16 (e.g. GCSE/O levels)Retired60United Kingdom35510101081010910101010108810080101009.59.666666667102.666666667109.285714286
194BMPCcurFemaleMasters degreeFull-time employment29United Kingdom046897728878864781317925.57.66666666781.66666666777.238095238
196PCcurMaleTrade/technical/vocational qualificationRetired62United Kingdom16478787687799777722277277.3333333339277.476190476
197OthercurFemaleMasters degreePart-time employment55United Kingdom4424884547987953281212804.25881.33333333326.523809524
198BMcurFemaleDoctoral degreeFull-time employment34United Kingdom046776836779866643437715.756.6666666678.53.33333333376.619047619
200BMPCcurFemaleMasters degreePart-time employment57United Kingdom1149871099897910898101419729.2589.5298.476190476
201PCcurMaleMasters degreeNot currently employed57United Kingdom5135756756876875561315615.75771.66666666756.571428571
Dataset 3.Raw data from study 3, the online volunteer manager survey.

Studies 1, 2 and 3: How do volunteer manager perceptions of volunteer well-being compare to volunteers’ actual sense of volunteering-related well-being?

Volunteer managers’ perception of their volunteers’ well-being corresponded to how volunteers felt just after volunteering ended (‘experienced well-being’) for ‘engagement’ and ‘meaning’ elements of well-being but significantly differed for ‘health’, ‘negative emotions’ and ‘loneliness’ in both biodiversity monitoring and practical conservation volunteering (Figure 9). Volunteer managers perceived their volunteers as significantly less healthy (Wilcoxon rank sum tests; p<0.001) and as having more ‘negative emotions’ (Wilcoxon rank sum tests; p<0.001) and feeling more ‘lonely’ (Wilcoxon rank sum tests; p<0.01) than was the experience of the volunteers. Managers in biodiversity monitoring also perceived volunteers’ ‘relationship’ and ‘happiness’ elements significantly lower than volunteers reported they felt (Wilcoxon rank sum tests; p<0.05).

78972e2d-f911-486a-92bc-821a1656e881_figure9.gif

Figure 9. Volunteer experienced well-being compared to volunteer managers’ perception of their volunteers’ well-being.

Volunteer experienced well-being just after volunteering ended compared to volunteer managers’ perception of their volunteers’ well-being (±SE bars). ‘Engagement’, ‘relationship’, ‘meaning’, ‘negative emotion’ and ‘health’ factor scores were means of factor item aggregates. ‘Loneliness’ and ‘happiness’ were single item measures. Health was a mean of factor item aggregates for volunteers and a single item for managers (Wilcoxon rank sum tests; *p<0.05, **p<0.01, ***p<0.001).

When volunteer managers’ perception of the well-being of their volunteers was compared to how volunteers later rated their remembered volunteering-related well-being, there was still a significant difference in all types of volunteering with managers rating their volunteers’ ‘health’ lower than the volunteers (Wilcoxon rank sum tests; p<0.05; Figure 10). Managers rated volunteers’ perceived ‘negative emotions’ significantly higher than volunteers did in all types of volunteering (Wilcoxon rank sum tests; p<0.05), except biodiversity monitoring. Managers also rated volunteers’ perceived ‘loneliness’ significantly higher in both practical conservation and biodiversity monitoring also doing practical conservation volunteering than volunteers (Wilcoxon rank sum tests; p<0.01). In non-environmental volunteering, managers rated volunteers’ perceived ‘happiness’ significantly lower than volunteers (Wilcoxon rank sum test; p<0.05).

78972e2d-f911-486a-92bc-821a1656e881_figure10.gif

Figure 10. Volunteer remembered well-being compared to volunteer managers’ perception of their volunteers’ well-being.

Volunteer remembered well-being compared to volunteer managers’ perception of their volunteers’ well-being (±SE bars). ‘Engagement’, ‘relationship’, ‘meaning’ and ‘negative emotion’ factor scores were means of factor item aggregates. ‘Loneliness’ and ‘happiness’ were single item measures. ‘Health’ was a mean of factor item aggregates for volunteers and a single item for managers (Wilcoxon rank sum tests; *p<0.05, **p<0.01, ***p<0.001). BMPC, biodiversity monitoring volunteers also doing practical conservation work.

Discussion

Overall, and supporting previous research, volunteering increased participants’ immediate sense of well-being, both by increasing positive elements and by decreasing negative emotions and loneliness, and it did so more than other types of nature-based activities. Remembering the volunteer experience later on, volunteers retained the feeling of a meaningful event with low levels of negative emotions and loneliness, though other positive feelings of engagement or positive relationships were not retained. Contrary to previous research, this study found that volunteering did not increase volunteers’ general level of well-being when compared to non-volunteers’ general level of well-being. Volunteer managers did perceive the increase in the positive elements of their volunteers’ well-being during volunteering but did not perceive the significant decrease in negative emotions and loneliness their volunteers reported. This section will further discuss these points.

How nature-based activities immediately affects participants’ sense of well-being

All nature-based activities examined in this research had a significant positive effect on some or all elements of participants’ well-being, a result that agrees with previous studies (Iwata et al., 2016; Koss & Kingsley, 2010; O’Brien et al., 2010; Wyles et al., 2016). However, contrary to many published studies that found volunteers had higher levels of well-being generally in life than non-volunteers (e.g. Greenfield & Marks, 2004; Harlow & Cantor, 1996; Konrath et al., 2012), this study found no significant difference between volunteers and non-volunteers in their general level of well-being. For the online sample in Study 2, reasons for this could be the relatively small sample size for non-volunteers (n=51) and a potential selection bias (Ahern, 2005) in survey participation, as non-volunteers were not a random sample of people not volunteering, but rather people showing an interest in volunteering, either as former volunteers or potential future volunteers. However, findings in Study 1 were similar to Study 2 though students and walkers did not participate in this survey due to an interest in volunteering, suggesting it was not only a case of selection bias or small sample size.

The finding in the current study that volunteers who spend more time volunteering report higher immediate and remembered well-being supports previous studies (Binder & Freytag, 2013; Thoits & Hewitt, 2001). One study has suggested that between 100 and 800 volunteer hours per year provided the highest rates of well-being (Windsor et al., 2008). However, other studies have found that the benefits of volunteering over 100 hours per year either led to no further benefits (Morrow-Howell et al., 2003) or led to decreased benefits and satisfaction (Van Willigen, 2000).

The lowered levels of ‘negative emotions’ and ‘loneliness’ during all nature-based activities support previous research showing that volunteering and restorative experiences can decrease mental health issues such as depression (Korpela et al., 2016; Musick & Wilson, 2008; Pillemer et al., 2010; Townsend, 2006). It also supports the idea that volunteering reduces unhappiness (Binder & Freytag, 2013; Wilson, 2012), and has a positive effect on the positive elements of people’s well-being.

Volunteering and physical health. Volunteers reported an increase in their health immediately after volunteering, reflecting previous research into practical conservation volunteering where volunteers, even though reporting they were in pain after volunteering, gained a sense of achievement from the pain, and perceived it as something positive (O’Brien et al., 2010). However, this positive effect did not last as volunteers remembering their health during volunteering later on rated it similar to their general health, which was not different to the health of non-volunteers, suggesting there is no long-term positive effect of volunteering on perceived physical health. This finding supports previous research with similar findings (Borgonovi, 2008; Jenkinson et al., 2013; Piliavin & Siegl, 2007), though some studies have found a positive relationship between volunteering and physical health (Pillemer et al., 2010; Thoits & Hewitt, 2001; Van Willigen, 2000).

Biodiversity monitoring volunteers and students. The student group was the only participant group that did not consistently show improvements in all elements of well-being immediately after their activity. The unchanged sense of ‘meaning’ and lowered level of ‘engagement’ among students during their fieldwork could stem from them seeing the fieldwork as a mandatory activity that they did not freely choose, even if they did choose their university course. The feeling of personal control and choice of activity is important for an activity to be seen as a positive experience (Stukas et al., 1999). As volunteers had freely chosen to participate in their activity, this may be one reason for the differences in activity-related well-being between students and biodiversity monitoring volunteers, even though they were performing the same type of tasks.

Practical conservation volunteers and walkers. Walking has previously been shown to decrease participants’ mental illness and negative affect and increase their sense of well-being (e.g. Iwata et al., 2016; Marselle et al., 2014), which was also found in this study. However, the current research also showed that even bigger decreases in negative affect can be achieved through practical conservation volunteering than through walking, and volunteering can have a positive effect on social relationships as well, an effect not consistently found for walking (Marselle et al., 2014). The ‘positive relationship’ element included an item on support from others: “To what extent did you receive help and support from others when you needed it during your walk/volunteering today?” This item was particularly differently rated by volunteers and walkers, suggesting that volunteers felt much supported in their volunteering by volunteer managers and other volunteers, whereas walkers possibly either did not perceive a need to be supported or were not supported and therefore rated the item lower than volunteers. For practical conservation volunteers, the coffee and lunch breaks provided additional opportunities for social interactions, which were important to the volunteers, as highlighted by a comment from a practical conservation volunteer to the ‘engagement’ item ‘To what extend did you lose track of time during volunteering today?’

“I never lose track of time, I always know what time it is: It is either before coffee, after coffee, before lunch or after lunch!”

(Male volunteer, Forestry Commission)

Volunteering has previously been found to benefit social well-being (Koss & Kingsley, 2010; O’Brien et al., 2010; Onyx & Warburton, 2003; Son & Wilson, 2012), which was also the case in this study with practical conservation volunteers having significantly higher levels of ‘positive relationships’, not only during the volunteer activity but also generally in life, than walkers did. Volunteering provides a space where people are having fun with others, can engage in meaningful conversations and feel they are understood, all of which can increase the quality of social relationships (Reis et al., 2000).

How volunteers sustained the memory of the experienced sense of well-being

When volunteers recalled their experience of volunteering later on and up to six months after volunteering, their ratings of their well-being during volunteering were less positive than immediately after volunteering. This difference between experienced and remembered well-being during volunteering is likely partly due to recall bias (Baumeister et al., 2001; Stone et al., 1999), which is the imperfect recollection of past emotions or events by respondents. It has been shown that ‘bad is stronger than good’ (Baumeister et al., 2001), which means that people remember and put more emphasis on negative events and emotions compared with positive events and emotions. Also volunteers in this research remembered the negative, as in the lowered ‘negative emotions’ and ‘loneliness’, better than the increased positive well-being indices. The ‘meaning’ element retained its high rating over time, supporting previous research that also showed retention of meaning (Wyles et al., 2016), and suggesting it may be a more robust construct than the ‘engagement’ or ‘relationship’ factors that did not retain their high ratings over time. ‘Meaning’ is part of eudaimonia and as such has been suggested to be longer-lasting than hedonic emotions, or moods, such as ‘positive emotions’ and partly the ‘engagement’ element (Piliavin, 2009).

Volunteer managers’ perception of volunteer well-being and how it compares to actual volunteer well-being

Managers in environmental volunteering rated the ‘health’ element of their volunteers’ well-being higher than non-environmental volunteer managers did. This difference between environmental and non-environmental managers’ perception of their volunteers’ health is possibly a reflection of the physical stamina and strength needed to perform environmental volunteering (O’Brien et al., 2010), whether the tasks are clearing invasive species or walking across uneven ground to record the species composition of an area. Volunteer managers spending more time with their volunteers seemed to better understand the well-being of their volunteers, as they rated their volunteers’ well-being more similar to volunteers’ ratings than managers who spent less time with their volunteers. However, managers still perceived volunteers as having more ‘negative emotions’, being ‘lonelier’ and being in worse ‘health’ than volunteers themselves reported. These worse ratings of negative indices are in line with previous research. A meta-analysis of self-reported and other-reported agreement in well-being ratings found an average correlation of 0.42 between average self-ratings and other-reported ratings for a combined score of life satisfaction, happiness, positive affect and negative affect (Schneider & Schimmack, 2009). Positive and negative affect measures had relatively low agreement, and negative affect (r=0.18) had less agreement than positive affect (r=0.24) (Schneider & Schimmack, 2009). Again, this finding could reflect that managers also put more emphasis on and remember negative emotions and events better than positive emotions and events (Baumeister et al., 2001).

Using a multidimensional approach to well-being in a volunteering context

It has been suggested that volunteering brings both hedonic and eudaimonic well-being benefits to volunteers (Piliavin, 2009), and such a multidimensional approach to well-being was supported by this research. It recovered five of the seven proposed factors from the PERMA-P (Butler & Kern, 2016), including the ‘engagement’, ‘relationship’, ‘meaning’, ‘health’ and ‘negative emotion’ factors, but excluding the ‘positive emotion’ and ‘achievement’ factors. ‘Achievement’ items instead related to both the ‘engagement’ and ‘meaning’ factors, suggesting volunteers may not have set goals for themselves within their volunteering role and therefore not been focused on the achievement of any specific goals. This scenario was also supported by comments from volunteers stating that they did not have specific goals for their volunteering. ‘Positive emotion’ items instead related to the ‘engagement’ and ‘relationship’ factors, suggesting that volunteers did not pursue the positive emotions themselves, but rather that positive emotions arose due to positive relationships and task engagement during volunteering. Future research is needed to further tease apart these relationships in a volunteering context. The value of a multidimensional approach to well-being in the volunteering context is the information gained about how volunteering affects the various elements of well-being differently. In this sample of volunteers, the effects of volunteering were all positive; however, for the students, their engagement decreased during their fieldwork, highlighting an area that should be investigated further to find ways to turn this negative effect around.

Implications

Walking has been advocated as a public health intervention (Iwata et al., 2016; Marselle et al., 2014), which the present findings support. However, they also suggest that environmental volunteering may provide increased benefits over and above the benefits of walking. For public health providers, this highlights environmental volunteering as a potential health intervention and a way to reintegrate people into society (O’Brien et al., 2011) by providing opportunities for positive relationships to develop. However, care must be taken to ensure that people actively choose the activity and do not feel forced to volunteer, as personal control and choice is important for a positive outcome (Stukas et al., 1999). For volunteer organisations, these positive results highlight that environmental volunteer projects provide benefits to the volunteers themselves and could be useful in motivating people to begin volunteering. In addition, it provides an opportunity to showcase to funding bodies that environmental volunteer projects provide positive outcomes also for the people involved in the projects.

The use of multidimensional well-being measures can provide the information that volunteer organisations and managers need to support and enhance the well-being of their volunteers. By assessing the individual elements, areas for improvement can be specifically targeted. For example, if the ‘meaning’ element is rated low by volunteers, improved feedback could be provided to volunteers to enhance their understanding of their role and thereby the meaning they derive from their volunteering. If ‘relationships’ are rated low, focus should be put on providing adequate support to volunteers during volunteering, as well as ensuring volunteers feel appreciated. Even if volunteers find their roles meaningful and relationships good, their ‘engagement’ may be lacking if they are not given interesting tasks and opportunities to fully immerse themselves in their volunteer tasks.

Conclusion

This study has shown the benefits of regarding volunteer well-being as a multidimensional construct to better understand how volunteering affects the various elements of well-being. It has highlighted how environmental volunteering immediately improved the well-being of participants, even more than other nature-based activities did. Volunteering improved participants’ well-being especially by lowering negative emotions and loneliness, and this was remembered long after volunteering ended. Most volunteer managers, however, did not perceive this significant decrease in negative emotions and loneliness in their volunteers during volunteering, although they did perceive an increase in positive well-being elements. This focus on negative emotions and events is possibly due to the well-established theory that ‘bad is stronger than good’. Volunteer organisations can use multidimensional assessment of volunteers’ well-being and managers’ perception of their volunteers’ well-being to identify and gain a deeper understanding of actual well-being, gaps in volunteer managers’ perceptions and potential areas for improvement.

Data availability

Dataset 1. Raw data from study 1, the onsite nature-based activity survey.

The raw data from onsite questionnaires of environmental volunteers and their control groups (walkers and students) supporting the findings described in the paper are provided. (DOI: 10.5256/f1000research.10016.d142072; Kragh et al., 2016a).

Dataset 2. Raw data from study 2, the online volunteer survey.

The raw data from online questionnaires of current, former and potential volunteers supporting the findings described in the paper are provided. (DOI: 10.5256/f1000research.10016.d142073; Kragh et al., 2016b).

Dataset 3. Raw data from study 3, the online volunteer manager survey.

The raw data from online questionnaires of current and former volunteer managers supporting the findings described in the paper are provided. (DOI: 10.5256/f1000research.10016.d142074; Kragh et al., 2016c).

Comments on this article Comments (0)

Version 1
VERSION 1 PUBLISHED 16 Nov 2016
Comment
Author details Author details
Competing interests
Grant information
Copyright
Download
 
Export To
metrics
Views Downloads
F1000Research - -
PubMed Central
Data from PMC are received and updated monthly.
- -
Citations
CITE
how to cite this article
Kragh G, Stafford R, Curtin S and Diaz A. Environmental volunteer well-being: Managers’ perception and actual well-being of volunteers [version 1; peer review: 2 approved]. F1000Research 2016, 5:2679 (https://doi.org/10.12688/f1000research.10016.1)
NOTE: If applicable, it is important to ensure the information in square brackets after the title is included in all citations of this article.
track
receive updates on this article
Track an article to receive email alerts on any updates to this article.

Open Peer Review

Current Reviewer Status: ?
Key to Reviewer Statuses VIEW
ApprovedThe paper is scientifically sound in its current form and only minor, if any, improvements are suggested
Approved with reservations A number of small changes, sometimes more significant revisions are required to address specific details and improve the papers academic merit.
Not approvedFundamental flaws in the paper seriously undermine the findings and conclusions
Version 1
VERSION 1
PUBLISHED 16 Nov 2016
Views
6
Cite
Reviewer Report 30 Jan 2017
Sabine Pahl, School of Psychology, Plymouth University, Plymouth, UK 
Approved
VIEWS 6
Title and Abstract:
This is fine. I have some comments on the comparisons and causality below that the authors should consider.
 
Article content/ Conclusions:
The article is well written and overall clearly structured. Using the ... Continue reading
CITE
CITE
HOW TO CITE THIS REPORT
Pahl S. Reviewer Report For: Environmental volunteer well-being: Managers’ perception and actual well-being of volunteers [version 1; peer review: 2 approved]. F1000Research 2016, 5:2679 (https://doi.org/10.5256/f1000research.10792.r19742)
NOTE: it is important to ensure the information in square brackets after the title is included in all citations of this article.
Views
9
Cite
Reviewer Report 29 Nov 2016
Sarah Elizabeth West, Stockholm Environment Institute at York, University of York, York, UK 
Approved
VIEWS 9
The abstract results section could be clearer, in particular the sentence starting ‘ Even remembering’.

I think it would be useful in the introduction to give the geographical context for your work, and figures about the size ... Continue reading
CITE
CITE
HOW TO CITE THIS REPORT
West SE. Reviewer Report For: Environmental volunteer well-being: Managers’ perception and actual well-being of volunteers [version 1; peer review: 2 approved]. F1000Research 2016, 5:2679 (https://doi.org/10.5256/f1000research.10792.r17678)
NOTE: it is important to ensure the information in square brackets after the title is included in all citations of this article.

Comments on this article Comments (0)

Version 1
VERSION 1 PUBLISHED 16 Nov 2016
Comment
Alongside their report, reviewers assign a status to the article:
Approved - the paper is scientifically sound in its current form and only minor, if any, improvements are suggested
Approved with reservations - A number of small changes, sometimes more significant revisions are required to address specific details and improve the papers academic merit.
Not approved - fundamental flaws in the paper seriously undermine the findings and conclusions
Sign In
If you've forgotten your password, please enter your email address below and we'll send you instructions on how to reset your password.

The email address should be the one you originally registered with F1000.

Email address not valid, please try again

You registered with F1000 via Google, so we cannot reset your password.

To sign in, please click here.

If you still need help with your Google account password, please click here.

You registered with F1000 via Facebook, so we cannot reset your password.

To sign in, please click here.

If you still need help with your Facebook account password, please click here.

Code not correct, please try again
Email us for further assistance.
Server error, please try again.