Keywords
India, Below Poverty Line, Healthcare benefits, Maharashtra Anaemia Study
India, Below Poverty Line, Healthcare benefits, Maharashtra Anaemia Study
Patel et al. (2015) provided a comprehensive picture of the current Indian healthcare structure, and also mentioned the National Health Mission’s (NHM) initiative to target inequalities in healthcare access1. Such national health programmes use the ‘Below Poverty Line’ (BPL) registration status to identify deprived families and provide them with free/subsidised healthcare services2. The registration is allocated at family level, based on a scoring system calculated using family level assets such as agricultural land, housing structures, electricity supplies, household equipment. The scoring system varies within Indian states. The BPL status provides access to free healthcare facilities along with monthly access to subsidised food products including but not limited to wheat, rice, cooking oil and sugar.
There are no data on family assets of BPL registrants. Therefore, in this study, we provide evidence of family-level assets among BPL registration holders (and non-BPL households) using research data we collected previously for the Maharashtra Anaemia Study (MAS)3–5. The MAS was conducted though a joint collaboration of Halo Medical Foundation (HMF), India and the University of Nottingham, UK.
The MAS was conducted to identify risk factors associated with anaemia in pregnant women (3 to 5 months gestation), and in 13 to 17 year old adolescent girls, living in 34 villages of the Osmanabad district of Maharashtra state of India. MAS collected information on health and social conditions along with blood investigations to examine anaemia risks in rural Indian communities. Additional details of the MAS project are published elsewhere3–5.
Data collection also included information on family assets such as agricultural land, housing structure, livestock, automobiles, employment, and home electronics. In this research note, we evaluated family level assets in relation with the BPL registration. The comparison was made in BPL and non-BPL holders for each asset using Chi-square statistics in Stata Software (V.13.1, Texas, USA).
In total, 287 pregnant women and 1010 adolescent girls participated in data collection, giving an overall response rate of 95%. We selected one person per household at random for the analysis, which resulted in 287 pregnant women (Dataset 16), all from unique households, and 891 adolescent girls (Dataset 27). Therefore, 1178 total households across 34 villages (a population of approximately 65,500) were used in analyses. Written approval was obtained from each study participant and their guardian prior to data collection, and the same was counter signed by the primary investigator (AA). The study was approved by the Institutional Ethics Committee of Government Medical College of Aurangabad, India (Reference number: Pharma/IEC/GMA/196/2014), and also by the Nottingham University Medical School Research Ethics Committee (Reference number: E10102013).
36.4% of adolescent girls (325/891), and 37.6% (108/287) pregnant women in our study had current BPL registration. 32.3% (105/325) of adolescent girl families with BPL registration had more than 5 acres of farming land, and 54.4% (177/325) had a colour television. Overall, of the 6 assets we assessed, 3 showed no significant differences in distribution (p>0.05) between BPL registered and non-registered families of adolescent girls (Table 1).
+: Those who are likely to be ineligible but hold BPL registration.
*: Those who appeared to be eligible but did not have registration.
Annual income is also presented in Great Britain Pound (GBP) based on the conversion rate of 1 GBP= 100 Indian Rupees (INR).
Note: Family income/assets was defined as an immediate family’s resources only. For example: for adolescent girls, it included participants’ parents’ (mother and father only) income/assets; among pregnant women, it included participants’ (pregnant woman) and husbands’ income/assets only. P values were calculated using chi square test.
Among families of pregnant women, 6 out of 9 assets assessed showed no significant differences (p>0.05) between BPL registered and non-registered. Furthermore, 2% of the families of BPL registrants (2/108) had an annual income greater than 100,000 INR (~1000 GBP), 27.8% had more than 5 acres of land (30/108), and 8.4% had three/four wheeler vehicles (9/108).
Non-eligible families holding the BPL registration are likely to increase burden on healthcare services, while those with greatest need may remain untreated due to absence of BPL registration, or inability to pay for healthcare services out of their own pockets2,8. Subsidising non-eligible BPL holders also increases the burden on government finances, which in light of the current fragile economic situation, is an important issue to address8.
We observed several participants from both study groups in the MAS, who appeared eligible for the BPL scheme, but had not obtained the registration. Many participants reported technical difficulties as the reason for not having BPL registration. Some of these technical difficulties included having problems procuring the required documents from government officials, and being unable to complete paperwork and other legal documents that are needed to submit the BPL application. This suggests a need to re-evaluate and strengthen the current BPL registration system, and also demands further monitoring to ensure that poor families in need receive vital healthcare and other subsidy benefits. The National Health Mission’s initiatives are well meant and have the potential to provide universal health coverage in India; however, implementation is challenging. Strengthening the current BPL registration system and improving identification of poor and needy families might help with achieving the universal health model. This may also help in revising the current health budget to allocate funds for the improvement of the governmental health system. We welcome the review from Patel et al. (2015) and suggest continuing evaluation of both national health projects and the BPL registration process, which will be useful in underpinning healthcare facilities whilst widening access.
Dataset 1: Pregnant Women MAS Project. The data has 287 pregnant women participants with self-explanatory variables on BPL registration, and related assets analysed in the paper.
doi, 10.5256/f1000research.10556.d1487436
Dataset 2: Adolescent Girls MAS Project. The data has 891 adolescent girls participants with self-explanatory variables on BPL registration, and related assets analysed in the paper
The study was approved by the Institutional Ethics Committee of Government Medical College of Aurangabad, India (Reference number: Pharma/IEC/GMA/196/2014), and also by the Nottingham University Medical School Research Ethics Committee (Reference number: E10102013). All participants and their guardians provided signed informed consent for the survey and blood withdrawal separately. Each consent was countersigned by the primary investigator (AA). Other than those who declined to participate, all adolescent girls and pregnant women received a standardised health report including information on their haemoglobin level and anaemia status along with facilitated access to educational materials on anaemia through the health NGO, Halo Medical Foundation’s (HMF) village based services. Participant health reports were also provided to the village health worker/government nurse with arrangements for free consultation and assistance if any significant health problems requiring further assessment or treatment were identified during the study. HMF’s hospital was also made available for free consultation as a primary referral centre if more specialist assessment or treatment was needed. On completion of data collection, an additional reminder letter was issued to village health workers indicating details of each severe anaemic case in their village to ensure that necessary medical advice and treatment was available.
The MAS project was designed by AF, AA, PM and LT. The data collection, analysis and manuscript preparation was carried out by AA with additional advisory support from AF, PM and LT.
The Maharashtra Anaemia Study (MAS) was conducted as part of Dr Anand Ahankari’s PhD programme with the University of Nottingham UK, which was sponsored by the University’s Vice Chancellor Scholarship for Research Excellence International 2013 (Tuition fee support, Ref 12031). The anaemia project conducted in Maharashtra, India, was a joint collaboration between the University of Nottingham and the Halo Medical Foundation (HMF), with the latter providing laboratory testing and data storage facilities. Project management and data collection were funded by Dr Hardikar through the Maharashtra Foundation, USA. Dr Ahankari also received a bursary from the Durga Devi Charitable Trust, India during the PhD studies.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Professor (Mr) and Mrs Chawathe, Mumbai, India provided generous support for Dr Ahankari’s study. The authors acknowledge the support of Ms. Sandhya Rankhamb in data collection, data entry, and verification, and recognise her contribution in the project. The authors thank HMF village health workers for providing field level support for this study. Support for publication of this article was obtained from the University of Nottingham, UK.
Views | Downloads | |
---|---|---|
F1000Research | - | - |
PubMed Central
Data from PMC are received and updated monthly.
|
- | - |
Competing Interests: No competing interests were disclosed.
Competing Interests: No competing interests were disclosed.
Alongside their report, reviewers assign a status to the article:
Invited Reviewers | ||
---|---|---|
1 | 2 | |
Version 1 09 Jan 17 |
read | read |
Click here to access the data.
Spreadsheet data files may not format correctly if your computer is using different default delimiters (symbols used to separate values into separate cells) - a spreadsheet created in one region is sometimes misinterpreted by computers in other regions. You can change the regional settings on your computer so that the spreadsheet can be interpreted correctly.
Click here to access the data.
Spreadsheet data files may not format correctly if your computer is using different default delimiters (symbols used to separate values into separate cells) - a spreadsheet created in one region is sometimes misinterpreted by computers in other regions. You can change the regional settings on your computer so that the spreadsheet can be interpreted correctly.
Provide sufficient details of any financial or non-financial competing interests to enable users to assess whether your comments might lead a reasonable person to question your impartiality. Consider the following examples, but note that this is not an exhaustive list:
Sign up for content alerts and receive a weekly or monthly email with all newly published articles
Already registered? Sign in
The email address should be the one you originally registered with F1000.
You registered with F1000 via Google, so we cannot reset your password.
To sign in, please click here.
If you still need help with your Google account password, please click here.
You registered with F1000 via Facebook, so we cannot reset your password.
To sign in, please click here.
If you still need help with your Facebook account password, please click here.
If your email address is registered with us, we will email you instructions to reset your password.
If you think you should have received this email but it has not arrived, please check your spam filters and/or contact for further assistance.
Comments on this article Comments (0)