ALL Metrics
-
Views
-
Downloads
Get PDF
Get XML
Cite
Export
Track
Research Article

PHENOstruct: Prediction of human phenotype ontology terms using heterogeneous data sources

[version 1; peer review: 2 approved]
PUBLISHED 16 Jul 2015
Author details Author details
OPEN PEER REVIEW
REVIEWER STATUS

This article is included in the Bioinformatics gateway.

This article is included in the Machine learning: life sciences collection.

Abstract

The human phenotype ontology (HPO) was recently developed as a standardized vocabulary for describing the phenotype abnormalities associated with human diseases. At present, only a small fraction of human protein coding genes have HPO annotations. But, researchers believe that a large portion of currently unannotated genes are related to disease phenotypes. Therefore, it is important to predict gene-HPO term associations using accurate computational methods. In this work we demonstrate the performance advantage of the structured SVM approach which was shown to be highly effective for Gene Ontology term prediction in comparison to several baseline methods. Furthermore, we highlight a collection of informative data sources suitable for the problem of predicting gene-HPO associations, including large scale literature mining data.

Keywords

human phenotype ontology, structured SVM

Introduction

In the medical context a phenotype is defined as a deviation from normal morphology, physiology, or behavior1. The human phenotype ontology (HPO) is a standardized vocabulary that describes the phenotype abnormalities encountered in human diseases2. It was initially populated using databases of human genes and genetic disorders such as OMIM3, Orphanet4 and DECIPHER5, and was later expanded using literature curation. The hierarchical structure of the HPO is very similar to that of the Gene Ontology (GO)6, and it too has the structure of a directed acyclic graph (DAG); like GO, more general terms are found at the top, and term specificity increases from the root to the leaves. This implies the “true-path rule”: whenever a gene is annotated with a given term, that implies all its ancestor terms.

HPO is composed of three subontologies: organ abnormality, mode of inheritance, and onset and clinical course. Organ abnormality is the main subontology which describes clinical abnormalities (Figure 1). The mode of inheritance subontology describes the inheritance patterns of the phenotypes. The onset and clinical course subontology describes the typical time of onset of clinical symptoms and their speed of progression. The organ abnormality, mode of inheritance and onset and clinical course subontologies are composed of ~10000, 25 and 30 terms respectively. Throughout this paper, the organ abnormality, the mode of inheritance, and the onset and clinical course subontologies will be referred to as the Organ subontology, Inheritance subontology and Onset subontology, respectively.

fab04ac9-1a08-410b-84f8-b66d0ca62aef_figure1.gif

Figure 1. A portion of the Organ abnormality subontology.

All HPO parent-child relationships represent “is-a” relationships.

The HPO web site (http://www.human-phenotype-ontology.org) provides gene-disease-HPO annotations that can be used for research involving human diseases. Over 50,000 annotations of hereditary diseases are available at the moment. Specifically, the genes are annotated with a set of phenotype terms based on their known relationships with diseases (Figure 2).

fab04ac9-1a08-410b-84f8-b66d0ca62aef_figure2.gif

Figure 2. HPO annotations.

a) general format of annotations: genes are annotated with a set of phenotype terms based on their known relationships with diseases b) an example annotation: the amyloid precursor protein (APP) gene is associated with Alzheimer’s disease and cerebroarterial amyloidosis. Therefore, the APP gene is annotated with the set of HPO terms (Organ in orange, Inheritance in green) associated with these diseases.

Currently, only a small fraction (~3000) of human protein coding genes are known to be associated with hereditary diseases, and only those genes have HPO annotations at the moment. But researchers believe that there are many other disease-causing genes in the human genome and estimate that another 5000 genes can be associated with phenotypes (Peter Robinson, personal communication, 2014). However, experimentally finding disease-causing genes is a highly resource consuming and difficult task7. Therefore, it is important to explore the feasibility of developing computational methods for predicting gene-HPO associations. While there is a plethora of computational approaches for the related task of prediction of gene-disease associations8, no computational method that directly predicts gene-HPO term associations exists at this time.

Approach

We define the HPO prediction problem as directly predicting the complete set of HPO terms for a given gene. This problem is a hierarchical multilabel classification (HMC) problem9, as a given gene can be annotated with multiple labels, and the set of labels have a hierarchy associated with them.

The traditional approach for solving HMC problems is to decompose the problem into multiple single label problems and apply independent binary classifiers for each label separately10; however, this approach has several disadvantages. First, independent classifiers are not able to learn from the inter-relationships between the labels. Second, the leaf terms typically have a low number of annotated examples making it difficult to learn an effective classifier. Furthermore, the predicted labels are typically hierarchically inconsistent, i.e. a child term (e.g. Hearing abnormality) is predicted while its parent term (e.g. Abnormality of ear) is not—making it difficult to interpret the predictions. To remedy this problem, an additional reconciliation step of combining independent predictions to obtain a set of predictions that are consistent with the topology of the ontology is required (see e.g. 11 for a discussion of several reconciliation methods that are effective for GO term prediction).

An alternative approach is to use a single classifier that learns a direct mapping from inputs to the space of hierarchically consistent labels; this can be achieved using structured prediction, which is a framework for learning a mapping from inputs to label spaces that have a structure associated with them12. This framework can capture information from the inter-relationships between labels and allows the prediction of a set of labels that are hierarchically consistent, eliminating the need for multiple classifiers, and the need for establishing hierarchical consistency between the predictions. Previously we have shown the effectiveness of modeling the GO term prediction problem using a structured prediction framework in a method called GOstruct13,14. In this work we demonstrate the effectiveness of this strategy for HPO term prediction using the same methodology, and explore a variety of data sources that are useful for this task, including large scale data extracted from the biomedical literature.

Methods

Data

Our models are provided with feature vectors and HPO annotations. Each gene/protein was characterized by several sets of features generated using four data sources: Network, GO, literature and variants, which are described below. We used the UniProt ID mapping service (http://www.uniprot.org/mapping/) for mapping genes to proteins.

HPO annotations

Gene-HPO annotations were downloaded from the HPO website (http://www.human-phenotype-ontology.org). We ignored the global root term (“ALL”) and root terms of the three subontologies. We also removed terms that were not annotated to 10 or more genes. Then we mapped the genes to proteins and generated corresponding protein-HPO annotations (see Table 1).

Table 1. Number of genes, unique terms and annotations.

The “unique terms” column provides both the number of terms and the number of leaf terms; the “annotations” column provides the number of annotations, as well as their number when expanded using the true-path rule.

Subont.GenesTermsAnnotations
Organ2,7681,796/1,337213k/60k
Inheritance2,66812/103.6k/3.3k
Onset92623/201.7k/1.4k

Network

We extracted protein-protein interactions and other functional association network data (i.e. co-expression, co-occurrence, etc.) from BioGRID 3.2.10615, STRING 9.116 and GeneMANIA 3.1.2 (http://pages.genemania.org/data/) databases.

The BioGRID database provides protein-protein interaction networks acquired from physical and genetic interaction experiments. STRING provides networks based on several different evidence channels (co-expression, co-occurrence, fusion, neighborhood, genetic interactions, physical interactions, etc.). We combined edges from the two databases by taking the union of interactions from BioGRID and STRING and represented each gene by a vector of variables, where component i indicates if the corresponding protein interacts with protein i in the combined network.

The GeneMANIA website (http://pages.genemania.org/data/) provides a large number of protein-protein interaction/association networks generated using several types of evidence: co-expression, co-localization, genetic interactions, physical interactions and predicted interactions. A gene is represented by a vector of variables for each network, where component i indicates if the corresponding protein interacts with protein i with respect to that particular network.

Gene Ontology

We extracted GO6 annotations from the GO web site (http://www.geneontology.org/) and Uniprot-goa (http://www.ebi.ac.uk/GOA). We excluded all annotations that were obtained by computational methods. A gene is represented as a vector of indicator variables in which variable i is 1 if it is annotated with GO term i.

Literature

We used two different sources for generating literature features: abstracts extracted from Medline on 10-23-13 and full-text articles extracted from PubMed Open Access Collection (PMCOA) on 11-06-13. A natural language processing pipeline was utilized to characterize genes/proteins by same-sentence word occurrences extracted from these sources, forming a bag-of-words (BoW) representation for each gene17. First, all words were lower-cased and stop words were removed. Then they were further filtered to keep only the low frequency words (i.e. words that are present only in less than 1% of the proteins in the data). A gene is represented by a vector in which the element i gives the number of times the word i occurred in the same sentence with that gene/protein.

Variants

We extracted all the disease variants in the human genome and their associated diseases from UniProt (http://www.uniprot.org/docs/humsavar). This data provides variants that have been found in patients and the disease-association is reported in literature. We also extracted gene-disease associations from the HPO website. This data associates a protein with diseases that are known to occur when the associated gene is mutated. To generate features from this data, we first extracted for each protein pi its set of associated diseases (Di) from the protein-disease associations. Then we retrieved the set of disease variants (Vi) associated with all diseases in Di from the UniProt disease variants data. Finally, each gene was represented by a vector in which element j indicates if the variant j is in Vi.

Models

In this work we compare a structured support vector machine approach against several baseline methods: a) binary support vector machines (SVMs) and b) a state-of-the-art HMC method based on decision tree ensembles (Clus-HMC-Ens). In this section we describe PHENOstruct and the two baseline methods. In addition, we assessed the performance of: c) an indirect method that first predicts disease terms for a gene using a structured model and then maps them to HPO terms and d) using OMIM disease terms predicted by PhenoPPIOrth18 followed by mapping the OMIM terms to HPO terms. We describe these two additional methods in the Supplementary material (see section “Additional methods”). All methods except PhenoPPIOrth were provided the same data.

PHENOstruct

In earlier work we developed the GOstruct method which uses structured SVMs (SSVM) for GO term prediction13. In this work we apply the same methodology to HPO term prediction and refer to it as PHENOstruct to emphasize the different problem domain. Unlike collections of binary classifiers applied independently at each node of the hierarchy, PHENOstruct predicts a set of hierarchically consistent HPO terms for a given gene (Figure 3). More specifically, PHENOstruct learns a compatibility function that models the association between a given input and a structured output12, in this case the collection of all hierarchically consistent sets of HPO terms. Let 𝒳 be the input space where genes are represented and let 𝒴 be the space of labels. The set of HPO terms associated with a given gene is collectively referred to as its (structured) label. 𝒴 represents each HPO subontology in a vector space where component i represents term i. Given a training set {(xi,yi)}i=1n where xi𝒳 and yi𝒴, the compatibility function f : 𝒳 × 𝒴 maps input-output pairs to a score that indicates how likely is a gene x to be associated with a collection of terms represented by y. The predicted label ŷ for an unseen input x can then be obtained by using the argmax operator as ŷ = argmaxy𝒴c f(x, y) where 𝒴c𝒴 is the set of all candidate labels. In this work we use the combinations of all terms in the training set as the set of candidate labels 𝒴c.

fab04ac9-1a08-410b-84f8-b66d0ca62aef_figure3.gif

Figure 3. Overview of PHENOstruct.

PHENOstruct takes the set of feature vectors and HPO annotations associated with each gene as input for training. Once trained, it can predict a set of hierarchically consistent HPO terms for a given test gene. PHENOstruct is trained on and makes predictions for a single subontology at a time (DAGs belonging to Organ, Inheritance and Onset subontologies are shown in orange, green and blue, respectively).

In order to obtain correct classification, the compatibility value of the true label (correct set of HPO annotations) of an input needs to be higher than that of any other candidate label (Figure 4). PHENOstruct uses structured SVM (SSVM) training where this is used as a (soft) constraint; it tries to maximize the margin, or the difference between the compatibility value for the actual label and the compatibility for the next best candidate12. In the structured-output setting, kernels correspond to dot products in the joint input-output feature space, and they are functions of both inputs and outputs. PHENOstruct uses a joint kernel that is the product of the input-space and the output-space kernels:

fab04ac9-1a08-410b-84f8-b66d0ca62aef_figure4.gif

Figure 4. Visual interpretation of the structured prediction framework.

The compatibility function, which is the key component of the structured prediction framework, measures compatibility between a given input and a structured output. The compatibility function of the true label (correct set of HPO annotations) is required to be higher than that of any other label. and the difference between these two scores (margin) is maximized.

K((x1,y1),(x2,y2))=K𝒳(x1,x2)K𝒴(y1,y2).

The motivation for this form is that two input/output pairs are considered similar if they are similar in both their input space features and their labels; the output space kernel, for which we use a linear kernel between label vectors, captures similarity of the annotations associated with two genes; the input space kernel combines several sources of data by the addition of multiple input-space kernels, one for each data source. Each kernel is normalized according to

Knorm(z1,z2)=K(z1,z2)/K(z1,z1)K(z2,z2)

before being used with the joint input-output kernel. The Strut library (http://sourceforge.net/projects/strut/) with default parameter settings was used for the implementation of PHENOstruct.

Binary SVMs

As a baseline method we trained a collection of binary SVMs, each trained on a single HPO term. Binary SVMs were trained using the PyML (http://pyml.sourceforge.net) machine learning library with default parameter settings. We used linear kernels for each set of input space features.

Clus-HMC-Ens

Clus-HMC-Ens is a state-of-the-art HMC method based on decision tree ensembles which has been shown to be very effective for GO term prediction19. In our study, we provide exactly the same set of features used with PHENOstruct as input to Clus-HMC-Ens and use parameter settings that provided the best performance for GO term prediction (https://dtai.cs.kuleuven.be/clus/hmc-ens/). The number of bags used was 50 for the Inheritance and Onset subontologies; 10 bags were used for the Organ subontology because of the large running times for this subontology.

Evaluation

Classifier performance was estimated using five-fold cross-validation. Since typically scientists/biologists are interested in knowing the set of genes/proteins associated with a certain HPO term, we primarily use a term-centric measure for presenting results. Term-centric measures average performance across terms as opposed to protein-centric measures which average performance across proteins as described elsewhere20. More specifically, we use the macro AUC (area under the receiver operating curve), which is computed by averaging the AUCs across HPO terms. For comparing performance across classifiers, p-values were computed using paired t-tests. Additionally, we report performance in terms of several protein-centric measures (precision, recall, F-max) in the Supplementary material (Table S3 and Table S4). Definitions of all performance measures are given in the Supplementary material. PHENOstruct assigns a confidence score to each predicted HPO term, which is computed using the compatibility function as described elsewhere14. The onset and clinical course subontology includes terms such as pace of progression, age of onset and onset which are only used for grouping terms. We ignore these grouping terms when computing performance.

Results and discussion

PHENOstruct performance

As illustrated in Table 2, PHENOstruct significantly outperforms Clus-HMC-Ens and the binary SVMs in the Organ and Onset subontologies. This suggests that modeling the HPO prediction problem as a structured prediction problem is highly effective. It is interesting to note that the biggest improvement of PHENOstruct over binary SVMs is seen in the Organ subontology. Given its very large number of terms, as well as the deep hierarchy, this further confirms the value of the structured approach. PHENOstruct outperforms binary SVMs in the Inheritance and Onset subontologies but to a lesser extent than in the Organ subontology because they are far less complex than the Organ subontology. We note that the two methods that first predict OMIM terms, which are then mapped to HPO terms performed poorly (see details in the Supplementary material). It is also interesting to see that Clus-HMC-Ens performs worse than binary SVMs with respect to macro AUC (Table 2) but performs slightly better than binary SVMs according to protein-centric F-max (Table S3).

Table 2. PHENOstruct vs. other methods.

Performance across the three HPO subontologies for PHENOstruct, binary SVMs and Clus-HMC-Ens measured using the macro AUC. P-values provide the significance level for the difference between the corresponding method and PHENOstruct.

Subont.TermsMethodAUCP-value
Organ1,796Binary SVMs0.661.7E-262
Clus-HMC-Ens0.650.0E+00
PHENOstruct0.73
nherit.12Binary SVMs0.722.2E-01
Clus-HMC-Ens0.737.3E-01
PHENOstruct0.74
Onset23Binary SVMs0.624.4E-03
Clus-HMC-Ens0.583.3E-05
PHENOstruct0.64

Table 3. Performance of PHENOstruct in the Inheritance subontology.

The average macro AUC for the Inheritance subontology is 0.74. Terms are displayed in ascending order of frequency.

NameFreq.DepthAUC
Multifactorial inheritance1510.54
Polygenic inheritance1520.54
Mitochondrial inheritance4110.98
Sporadic5210.61
Somatic mutation6110.76
X-linked dominant inheritance6230.83
X-linked recessive inheritance11130.77
Heterogeneous14810.69
Gonosomal inheritance19810.80
X-linked inheritance19820.80
Autosomal dominant inherit.109610.78
Autosomal recessive inheri.166510.73

PHENOstruct’s average AUC for the Organ and Inheritance subontologies are 0.73 and 0.74, respectively. Even though the Organ subontology is a far more complex subontology than the Inheritance subontology (with thousands of terms and 13 levels as opposed to tens of terms and only 3 levels) they show similar performance. The Onset subontology is the hardest to predict accurately, with an average AUC of 0.64. Only six Onset subontology terms have individual AUCs above 0.7 (Table 4).

Table 4. Performance of PHENOstruct in the Onset subontology.

The average macro AUC for the Onset subontology is 0.64. Terms are displayed in ascending order of frequency.

NameFreq.DepthAUC
Late onset1140.70
Neonatal death1420.54
Sudden death1420.50
Nonprogressive disorder1520.82
Stillbirth2120.67
Death in childhood2320.65
Neonatal onset2330.64
Rapidly progressive3320.50
Childhood onset4130.62
Death in infancy4420.70
Incomplete penetrance5820.61
Juvenile onset9030.70
Slow progression9520.62
Adult onset9830.71
Death11110.61
Variable expressivity13220.66
Congenital onset13530.60
Progressive disorder14120.70
Infantile onset24530.66
Phenotypic variability31010.65

Even though PHENOstruct outperforms the baseline methods, there is much room for improvement, especially in the Onset subontology. The small number of annotated genes in this subontology (Table 1) makes it difficult to train an effective model while the incomplete nature of the current gold standard used for evaluation tends to underestimate performance of classifiers21. See section for a detailed analysis of false positives.

In general, Organ subontology terms with few annotations show a mix of both high and low performance as illustrated in Figure 5. This suggests that PHENOstruct is not necessarily affected by the frequency of the terms. But, terms with more annotations tend to show moderate performance. See Figure 6 for an example of experimental and predicted annotations (Organ subontology) for a protein. It is interesting to note that “polygenic inheritance” and its parent term “mulifactorial inheritance” have the lowest number of annotations as well as the lowest individual AUCs in the Inheritance subontology (see Table 3). These are the two terms with the lowest AUC with binary SVMs as well (see Table S6). It is not surprising that these two terms have lower accuracy because each describes inheritance patterns that depend on a mixture of determinants. Moreover, the diseases inherited in this manner – termed complex diseases – are not as well characterized and annotated compared to Mendelian/single gene diseases. On the other hand, the mitochondrial inheritance term has an exceptional AUC of 0.98. It is also the term with the highest AUC with the binary SVMs as well (see Table S6). The human mitochondrial DNA was the first significant part of the human genome to be fully sequenced, two decades before the completion of the human genome project22. Due to this, and the relative ease of sequencing the mitochondrial genome23, diseases caused by mutations in human mitochondrial DNA have been reported very early24,25. It is likely that this well-studied nature of mitochondrial DNA leads to the high performance of the mitochondrial inheritance term.

fab04ac9-1a08-410b-84f8-b66d0ca62aef_figure5.gif

Figure 5. Performance of PHENOstruct in the Organ subontology.

Performance for each term is displayed using AUC against its frequency. The average AUC for the Organ subontology is 0.73.

fab04ac9-1a08-410b-84f8-b66d0ca62aef_figure6.gif

Figure 6. Example of experimental and predicted annotations.

a) experimental annotation of protein P43681 b) PHENOstruct’s prediction for P43681 (protein-centric precision and recall for this individual protein is 1.0 and 0.62, respectively).

As a potential improvement to PHENOstruct we explored an approximate inference algorithm that replaces computation of the most compatible label by looping overall combinations of labels that occur in the training data with a dynamic programming algorithm that performs approximate evaluation of all possible combinations of hierarchically consistent labels. However, this led to a slight decrease in performance, showing the advantage of considering only the biologically relevant combinations. Further research should consider other alternatives.

All experiments were performed on Linux running machines with 8 cores (64-bit, 3.3GHz) and 8GB memory. Combined running times for performing five-fold cross-validation for all three subontologies are: binary SVMs: 55 hours, Clus-HMC-Ens: 825 hours and PHENOstruct: 90 hours.

Effectiveness of individual data sources

We performed the following set of experiments in order to identify the most effective data sources for HPO prediction using PHENOstruct. First, to identify the individual effectiveness of each source, we performed a series of experiments in which we provided features generated from a single source of data at a time as input to PHENOstruct. Then to understand how much each data source is contributing to the overall performance we conducted leave-one-source-out experiments.

In all three subontologies, network data is the most informative individual data source as illustrated in Figure 7. Moreover, it is by far the main contributor to the overall performance both in the Organ and Inheritance subontologies (Figure 8). This is intuitive because if two genes/proteins are known to be interacting and/or active in the same pathways it leads to association with the same/similar diseases/phenotypes.

fab04ac9-1a08-410b-84f8-b66d0ca62aef_figure7.gif

Figure 7. Performance of PHENOstruct with individual data sources.

Results are shown for each source of data: network (functional association data); Gene Ontology annotations; literature mining data; genetic variants; and the model that combines all features together.

fab04ac9-1a08-410b-84f8-b66d0ca62aef_figure8.gif

Figure 8. Performance of PHENOstruct in leave-one-source-out experiments (measured by the % change in macro AUC by leaving out a single selected source relative to its macro AUC obtained using all data sources; negative % change means the performance dropped after leaving out the particular source of data).

Although the genetic variant features provide the lowest performance in the Organ and Onset subontologies, leaving out variant data hurts the overall performance noticeably in all three subontologies as can be seen in Figure 8. This suggests that variant data are very useful especially as a complementary dataset to the others. Moreover, we found that variant data are very effective for predicting cancer-related terms in the Organ subontology (see Table S1).

It is very encouraging to see that the literature data with a simple BoW representation by itself is very informative (Figure 7) and leaving out literature features shows considerable performance drop in the other two subontologies (Figure 8). In an analysis of the SSVM weight vector, we found that the majority of the most important tokens extracted from literature consist of names of proteins, genes and diseases (see Table S2).

We also considered an alternative representation of the literature data where a gene is represented by a vector in which the element i gives the number of times the word i occurred in the same sentence with that particular gene/protein divided by the total number of unique genes/proteins that word co-occurred with. This representation is analogous to the TFIDF (term frequency ∗ inverse document frequency) representation typically used in information retrieval and text mining26. However, these features led to slight deterioration of performance in all three subontologies (macro AUCs 0.60, 0.58 and 0.56 for Organ, Inheritance and Onset subontologies, respectively).

Although GO features provide the second best individual performance both in the Organ and Onset subontologies (Figure 7), their contribution to the overall performance is very minimal (Figure 8). In fact leaving out GO features increases the overall performance in the Inheritance and Onset subontologies. The incompleteness of GO annotations may have contributed towards this.

Finally, the combination of all the features provides higher performance than individual feature sets in all three subontologies as can be seen in Figure 7. However, leaving out GO features in the Inheritance and Onset subontologies, led to improved performance, suggesting that not all sources contribute to the overall performance. This shows that the selection of data sources must be performed carefully in order to find the optimal combination of sources for each subontology.

Validating false positives

Like other biological ontologies, the HPO is incomplete due to various factors such as slowness of the curation process27. In other words, the set of HPO annotations we considered as the gold standard does not fully represent all the phenotypes that should be associated with the currently annotated genes; this leads to performance estimates that underestimate the true performance of a classifier21. To explore this issue, we selected 25 predictions made by PHENOstruct which were considered false positives according to the current gold standard and looked for evidence in the current biomedical literature that can be used as evidence for those predictions. For 14 of those predictions we were able to find supporting evidence. The details of the complete validation process are given in the Supplementary material.

Conclusions and future work

This is the first study of directly predicting gene-HPO term associations. We modeled this problem as a hierarchical multi-label problem and used the SSVM framework for developing PHENOstruct. Our results demonstrate that using the SSVM is more effective than the traditional approach of decomposing the problem into a collection of binary classification problems. In our experiments we evaluated several types of data which were found to be informative for HPO term prediction: networks of functional association, large scale data mined from the biomedical literature and genetic variant data.

There are several ways in which this work can be extended. For the literature data we used a simple BoW representation. An alternative is to try and extract gene-HPO term co-mentions directly; in the context of GO term prediction we have found that both approaches lead to similar overall performance17. However, co-mentions have the added value that they are easy to verify by a human curator. Another source of information that can be utilized is semantic similarity of HPO terms to other phenotypic ontologies such the mammalian phenotype ontology, which is currently used for annotating the rat genome28. Finally, exploring the effectiveness of combining all three subontologies, as opposed to treating them as three independent subontologies as we have done here, is also worth exploring.

Although PHENOstruct outperformed the baseline methods, there is considerable room for improvement in all three subontologies. While some improvement can likely be obtained as described above, its performance will also improve as the number of HPO annotations increases. HPO is a relatively new ontology that will likely see substantial growth in the coming years, which will help in improving the accuracy of computational methods that contribute to its expansion.

Data and software availability

Zenodo: Data and software associated with PHENOstruct:Prediction of human phenotype ontology terms using heterogeneous data sources, 10.5281/zenodo.1876429

Comments on this article Comments (0)

Version 1
VERSION 1 PUBLISHED 16 Jul 2015
Comment
Author details Author details
Competing interests
Grant information
Copyright
Download
 
Export To
metrics
Views Downloads
F1000Research - -
PubMed Central
Data from PMC are received and updated monthly.
- -
Citations
CITE
how to cite this article
Kahanda I, Funk C, Verspoor K and Ben-Hur A. PHENOstruct: Prediction of human phenotype ontology terms using heterogeneous data sources [version 1; peer review: 2 approved]. F1000Research 2015, 4:259 (https://doi.org/10.12688/f1000research.6670.1)
NOTE: If applicable, it is important to ensure the information in square brackets after the title is included in all citations of this article.
track
receive updates on this article
Track an article to receive email alerts on any updates to this article.

Open Peer Review

Current Reviewer Status: ?
Key to Reviewer Statuses VIEW
ApprovedThe paper is scientifically sound in its current form and only minor, if any, improvements are suggested
Approved with reservations A number of small changes, sometimes more significant revisions are required to address specific details and improve the papers academic merit.
Not approvedFundamental flaws in the paper seriously undermine the findings and conclusions
Version 1
VERSION 1
PUBLISHED 16 Jul 2015
Views
30
Cite
Reviewer Report 28 Aug 2015
Shaillay Dogra, Vishuo BioMedical Pte Ltd, Singapore, Singapore 
Approved
VIEWS 30
A well written article with detailed methodology towards mapping genes to diseases. The method proposes to overcome the limitations of traditional approaches, which take single-label at a time. Author's approach uses structured prediction that takes into account related set of ... Continue reading
CITE
CITE
HOW TO CITE THIS REPORT
Dogra S. Reviewer Report For: PHENOstruct: Prediction of human phenotype ontology terms using heterogeneous data sources [version 1; peer review: 2 approved]. F1000Research 2015, 4:259 (https://doi.org/10.5256/f1000research.7166.r9995)
NOTE: it is important to ensure the information in square brackets after the title is included in all citations of this article.
Views
37
Cite
Reviewer Report 14 Aug 2015
Peter N. Robinson, Institute for Medical and Human Genetics, Humboldt-Universität, Berlin, Germany 
Approved
VIEWS 37
The authors present a clever strategy for using a machine learning approach to predict associations between genes and human phenotype ontology (HPO) terms. The HPO, as many other ontologies like the Gene Ontology, has a hierarchical structure such that annotations ... Continue reading
CITE
CITE
HOW TO CITE THIS REPORT
Robinson PN. Reviewer Report For: PHENOstruct: Prediction of human phenotype ontology terms using heterogeneous data sources [version 1; peer review: 2 approved]. F1000Research 2015, 4:259 (https://doi.org/10.5256/f1000research.7166.r9567)
NOTE: it is important to ensure the information in square brackets after the title is included in all citations of this article.

Comments on this article Comments (0)

Version 1
VERSION 1 PUBLISHED 16 Jul 2015
Comment
Alongside their report, reviewers assign a status to the article:
Approved - the paper is scientifically sound in its current form and only minor, if any, improvements are suggested
Approved with reservations - A number of small changes, sometimes more significant revisions are required to address specific details and improve the papers academic merit.
Not approved - fundamental flaws in the paper seriously undermine the findings and conclusions
Sign In
If you've forgotten your password, please enter your email address below and we'll send you instructions on how to reset your password.

The email address should be the one you originally registered with F1000.

Email address not valid, please try again

You registered with F1000 via Google, so we cannot reset your password.

To sign in, please click here.

If you still need help with your Google account password, please click here.

You registered with F1000 via Facebook, so we cannot reset your password.

To sign in, please click here.

If you still need help with your Facebook account password, please click here.

Code not correct, please try again
Email us for further assistance.
Server error, please try again.